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INTRODUCTION

Tomato (Solanum lycopersicum.), belongs to the Solanaceae 
family, is a major horticulture crop that has attained enormous 
popularity in the last century. It is grown in almost every 
country in the world. The tomato crop is very versatile and is 
grown for both fresh marketing and manufacturing. Production 
and consumption of tomatoes have risen very rapidly in the past 
25 years. Tomato is a rich source of Vitamins A and C as well 
as protein, and it is free of cholesterol (Hobson and Davies, 
1971). Tomato contains around 20–50 mg lycopene/100 g 
of fruit weight (Kalloo, 1991). Lycopene is also known as 
carotenoids, which are natural compounds that are responsible 
for the color of fruit and vegetable. Lycopene is the most potent 
antioxidant in the carotenoid family and protects humans 
against free radicals that cause toxic effect on many parts of 
the body; it is also believed that lycopene can prevent cancer 
(Block et al., 1992; Gerster, 1997; Rao and Agarwal, 2000). 
Tomatoes are currently eaten at a higher rate in developed 
countries than in developing countries and can, therefore, be 
called a luxury crop.

Tomato has been widely used as a model plant system for 
understanding biological processes, functional genomics, 
proteomics, and metabolomics (Arumuganathan and Earle, 
1991). The culture of plant tissue has advanced greatly since 
its introduction in the 1930s, when scientists began using this 
technique to grow cells in culture. At present it is commonly 
used for several different purposes such as callus induction, 
another culture, protoplast culture, and somatic embryogenesis. 

Plant cell and tissue culture play a key role in Agrobacterium 
tumefaciens mediated genetic transformation, electroporation, 
particle gun, and genome editing. In recent times, genetic 
transformation and genome editing of plants have become an 
important tool in both basic and applied research by insertion 
or deletion of target DNA into plant genome. Transgenic and 
genome editing technology has progressed to extent that it is 
now widely used to research various biological phenomenon, 
namely, the effect of biochemical pathways, stress response, 
resistance to pathogens and more specifically, to obtain 
commercial crops with enhanced herbicide resistance, disease 
resistance, and abiotic stress tolerance (Liénard et al., 2007; 
Rai et al., 2013a; 2013b). Agrobacterium-mediated plant 
transformation is the most effective and low-cost system among 
the different plant transformation methods used for stable gene 
transfer. Agrobacterium-mediated plant transformation utilizes 
A. tumefaciens Ti plasmid to pass and incorporate a DNA 
fragment (T-DNA) into the host plant genome. Agrobacterium-
mediated tomato transformation has been widely used for gene 
transfer, and tomato plants have been developed for a number 
of purposes, including enhancing biotic and abiotic stress 
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tolerance (Jia et al., 2002), characterizing gene functions (Goel 
et al., 2010; Khare et al., 2010), and developing foreign proteins 
(Salyaev et al., 2007; Youm et al., 2008). Nevertheless, one 
of the major hurdles in engineering economically important 
tomato cultivars is the lack of a highly efficient and reproducible 
transformation method (Velcheva et al., 2005). Agrobacterium-
mediated transformation of tomatoes was first reported in 1985 
(Horsch et al., 1985), and since then numerous refinements 
have been developed by various investigators (McCormick et 
al., 1986; Hamza and Chupeau, 1993; Frary and Earle, 1996; 
Park et al., 2003; Cortina and Culianez-Macia, 2004; Velcheva 
et al., 2005; Gao et al., 2009; Rai et  al., 2012). However, 
many of these studies do not provide crucial details of the 
transformation process and are limited to “model” genotypes 
of tomato, which makes it difficult to implement the results 
of other research groups to additional tomato cultivars (Sun 
et al., 2006). Researchers are actively engaged in genome 
editing of several crop plants. Tomato being a model crop 
plant has witness several genome editing researches resulting 
in development of many novel genome edited plants. De novo 
domestication of wild tomato using genome editing has been 
reported by Zsogon et al. (2018). They reported editing of six 
loci which are important for yield and productivity in present-
day tomato crop lines to enable de novo domestication of wild 
Solanum pimpinellifolium which altered morphology of plant 
together with the size, number, and nutritional value of the 
fruits. Compared with the wild parent the genome edited S. 
pimpinellifolium lines have a threefold increase in fruit size and 
a tenfold increase in fruit number with altered morphology and 
nutritional value of the fruits.

In vitro regeneration of cultivated tomato (S. lycopersicum.) has 
been a focus of research due to the commercial importance of 
the crop and its suitability for further development by genetic 
engineering (Evans, 1989). Consequently, various studies 
have been carried out on the regeneration of plants from a 
wide variety of wild and cultivated tomato germplasm tissue 
and organs (Padmanabhan et al., 1974; Cassells, 1979; Novak 
and Maskova, 1979; Ancora and Ramulu, 1981; Zapata et al., 
1981). Several in vitro studies on tomato have been carried 
out such as selection of cell lines for biotic and abiotic stresses 
(Stavarek and Rains, 1984; Toyoda et al., 1984; 1985; 1989; 
Rahman and Kaul, 1989); haploid growth (Gresshoff and Doy, 
1972; Zagorska et al., 1982; 1998; Chlyah and Taarji, 1984; 
Shtereva et al., 1998); somatic hybrid production (Sink et al., 
1986; Wijbrandi et al., 1988); and mass propagation (Fari 
et al., 1992). Growth of tomato has been affected by many 
diseases caused by bacteria, fungi, viruses, and nematodes. 
Bacterial wilt (Pseudomonas solanacearum), bacterial 
canker (Corynebacterium michiganense), and bacterial speak 
(Pseudomonas syringae) are major bacterial diseases. Common 
fungal diseases are fusarium wilt (Fusarium oxysporum f. Sp. 
Lycopersici), verticillium wilts (Verticillium dahlia), and early 
and late blights, caused, respectively, by Alternaria solani and 
Phytophthora infestans. The Meloidogyne incognita nematode 
induces an infection in the root knot. Such diseases also help 

to reduce the recovery of hybrid seed from field. The use of 
disease-resistant cultivars can be an important way to manage 
the aforementioned diseases. Genetic engineering techniques are 
playing an important role in growing disease-resistant cultivars. 
In 1994 Calgene, Inc. launched antisense RNA technology 
in tomato, which was used to improve shelf life (Flavr Savr 
tomato). To boost the carotenoid content and profile of tomato 
fruit, transgenic lines were developed by Romer et al. (2000), 
containing a bacterial carotenoid gene (crtl) encoding the 
phytoene desaturase enzyme, which transforms phytoene into 
lycopene. The existing protocols used for tomato transformation 
are based on shoot regeneration from leaf disc/cotyledon tissue 
cocultivated with disarmed A. tumefaciens harboring binary 
vector (Fillatti et al., 1987). In general, the efficiency of these 
procedures is poor (Hamza and Chapeau, 1993; Frary and Earle, 
1996), as most transformed leaf/cotyledon cells do not turn into 
shoots (Peres et al., 2001). Despite several reports produced on 
tomato plant regeneration (Padliskikh and Yarmishin, 1990; Fari 
et al., 1992; Izadpanah and Khosh-Khui, 1992).

Apart from being a genetic engineering tool, tissue culture can 
be used to micropropagate high-value commercial cultivars. 
Developing a cost-efficient and effective protocol for the mass 
propagation of high-quality seedling through the cultivation of 
tomato tissue may help to the lower the price per seedling. A 
successful regeneration system of plants in vitro can also aid 
in further improving the commercially valuable cultivars for 
disease resistance by genetic engineering.

Vast quantities of reports on the factors affecting tissue culture 
of tomato are available. This information was reviewed 
here with view to bringing all relevant information into 
one forum and highlighting the areas that still need to be 
investigated. Hopefully this review would help many students 
and researchers gain a quick glimpse of the tissue culture 
information available in tomatoes before starting their research.

Effect of Genotype

During regeneration, most tomato genotypes respond specific to 
plant growth regulators (PGRs) (Kurtz and Lineberger, 1983). 
Variations in the quantity and form of PGRs influence both the 
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percentage of explants showing regeneration and the number of 
shoots/explant (Plastira and Perdiris, 1997). These variations 
are heritable and can be regulated by both cytoplasmic and 
nuclear genes, as shown in the reciprocal hybrids (Ohki et al., 
1978). Genotypic variations for PGR requirements and type 
of explants can be seen. Frankenberger et al. (1981a; 1981b) 
demonstrated genotypic influences on regeneration. Davis 
et al., 1994, stated that the “Better Boy” cultivar regenerated 
only from hypocotyls, while “Spring Giant” regenerated both 
from hypocotyls and cotyledonary explants.

EXPLANT TYPE

Researchers used different types of explants, namely, Cotyledon, 
hypocotyls, pedicel, peduncle, leaf stem sections, and 
organogenic inflorescence. Effects of explant type (Hamza and 
Chupeau 1993; Park et al., 2003) were amply discussed. The 
reproductive organs in tomatoes can also be regenerated into 
vegetative organs. Compton and Veilleux (1991) use tomato 
inflorescence explants and regenerated de novo shoots, roots, and 
flowers. In addition, Applewhite et al., 1994, obtained explants 
from pedicels and peduncles of flowering tomato plants which 
were regenerated into roots, shoots, and ultimately whole fruit 
bearing plants. Duzyaman et al. (1994) reported that the degree 
of shoot regeneration was in the order of leaves ≥ cotyledons ≥ 
hypocotyls, and all cultivars responded similarly. Plastira and 
Perdikaris (1997) founded differential regeneration frequency of 
various explants in the order of hypocotyl > cotyledon > leaf. 
Hypocotyl explants also proved preferential regeneration better 
than cotyledon explants (Gunay and Rao, 1980). Unlike these 
results, Schutze and Wieczorrek (1987) reported that in vitro 
shoot regeneration from cotyledon explants was better than that 
of hypocotyls explants. Most of the tomato tissues tend to be 
highly totipotential; but choice of right explant may differ with 
the genotype.

EFFECT OF AGE, SIZE, AND 
ORIENTATION OF EXPLANTS

The success of tissue culture depends on the age of the explant. 
Young and soft tissue are usually more efficient for tissue 
culture than old and woody tissues. However, Dai et al. (1988) 
reported that the tomato’s regeneration capacity increased with 
an increase in the explant’s age. Rai et al. (2012) reported that 
cotyledon explants excised from 6 days old seedling gives 
higher regeneration and transformation frequency. Optimum 
size of explant is important for good regeneration in tomato. 
Very small structures as individual cells, cells clumps, and 
meristem are usually considered much more difficult for growth 
induction than entire structures such as explants of leaf, stem, 
or tuber. However, Schutze and Wieczorrek (1987) found that 
small explants produced more shoots than big explants. Chandel 
and Katiyar (2000) reported that the ideal size for tomato is 0.5 
cm2 for leaf explants and 1 cm long segments for shoot explants. 
Explants can be inoculated in polar (straight up, with the 

physiological base in the medium) or apolar (upside down and 
physiological base out of the medium) orientation on the culture 
medium. The polar orientation usually more easily regenerates 
roots and shoots than non-polar orientation. More shoots are 
produced from horizontally placed leaf and cotyledon explants 
than from vertically placed ones, and horizontally placed 
hypocotyls explants produce more shoots than those placed 
vertically straight or upside down (Duzyaman et al., 1994). On 
the other hand, Costa et al. (2000a) found, that the position of 
the cotyledon segment (apical or basal) did not lead to major 
variation in the average frequency of regeneration or number of 
shoots. Medium size explants with the right orientation may be 
a good option for achieving tomato shoot regeneration.

PHYSICAL FACTORS

Effect of Light and Temperature

Light is very important factor, because explants growth and 
differentiation depend on the duration of exposure and light 
quality. Light has two types of effects on regeneration: 
1.	 The tissue culture response of tomato explant depends 

on the quality and amount of light used in growing the 
mother plant (Lercari et al., 2002). In general, the explants 
obtained from the etiolated seedling do not show strong 
response to regeneration (Bertram and Lercari, 2000).

2.	 Light condition also affects explants response at the time 
of incubation. Explants of tomatoes grown in white light 
show better regeneration than those developed in red 
or green light (Schutze and Wieczorrel, 1987). Pugliesi 
et al. (1999) reported that light is absolutely vital for the 
regeneration of tomato shoots; in the absence of light, no 
regeneration is possible.

Most tomato regeneration studies have used a photoperiod of 
16 h. There is a lack of research about the impact of photoperiod 
on tomato regeneration. Cooler temperature (19°C) increased 
the regeneration ability of explants from tomato stem relative 
to warmer temperatures (28°C) (Reynolds et al., 1982). 
Conclusively, light is essential for tomato regeneration.

CHEMICAL FACTORS

Nutrient Media

MS or the modified MS medium is preferably used for 
tomato tissue culture (Kartha et al., 1976; Compton and 
Veilleux, 1988; 1991; Chandel and Katiyar, 2000; Park 
et al., 2001). In addition, most media contain myo-inositol 
at a concentration of 100 mg/L. Callus of tomato responds 
differently to varying concentrations of nutrients. Cano et al. 
(1990) used two modified MS (namely, NK and NB) media. 
In NB (MS basal mineral salt + inositol 6 mg/L + thiamine 
HCL 4 mg/L + nicotinic acid 0.5 mg/L + glycine 2 mg/L), 
fresh weight, dry weight, and callus diameter were greater 
than in NK (MS basal mineral salt + inositol 100 mg/L + 
thiamine HCL 10 mg/L + nicotinica acid 0.5 mg/L + glycine 
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0.5 mg/L). Selvi and Khader (1993) successfully used B5 
vitamins along with major and minor nutrients of MS basal 
medium. Ferulic acid (0.15 mg/L), adenine (15 mg/L), and 
glutamine (20 mg/L) are other chemicals that have increased 
callus production. Chemicals such as ascorbic acid and glycine 
had little effect on the regeneration of the shoot (Smirnov and 
Smirnova, 1981). While most researchers did not observe a 
release of dark colored phenol during tomato organogenesis, 
Rao et al. (1985) observed an accumulation of phenolic 
compounds during a span of 7 days of culture. These phenolic 
compounds comprised 25% of the total tissue monomers 
found. The phenolic compound composed of vanillin (74.9%), 
p-coumaric acid (14.9%), p-hydroxybenzaldehyde (6.6%), 
and syringaldehyde (3.6%), respectively. The use of various 
antioxidants in tomato tissue culture has been found to inhibit 
the influence of phenolic compounds. Phenoxazine, alpha-
tocopherol, ascorbic acid, and BHT are some antioxidants 
which are used in tissue culture to inhibit phenolics.

SUGAR CONCENTRATION

Only a small number of plant cell lines have been isolated which 
can grow autotrophically when cultivated in vitro. Autotrophic cells 
are capable of achieving self-sufficiency during photosynthesis 
by assimilating CO2 in their own carbohydrates requirements 
(Bergmann, 1967). Usually, adding a carbon source to the growth 
medium is important for the cells, tissue, or organ cultures. Sucrose 
is used for micropropagation purposes almost universally, because 
it can be readily used by cells. The optimal sucrose concentration 
required to induce organogenesis or growth varies between 
genotypes. Sucrose appears to be important to the healthy growth 
of tomato crops and has been used by most researchers as the 
only source of “energy” (Compton and Veilleux, 1988; Chen et 
al., 1999; Costa et al., 2000a; 2000b; Venkatachalam et al., 2000). 
However, some researchers have also attempted ribose, glucose, 
palatinose, and furanose. The tomato callus or cell cultures cultured 
on ribose-media as the sole source of carbon, the tissues turmed 
dark brown, and ceased to grow. However, bright green tissues 
emerged from about 3% of the brown necrotic callus tissue after 
around 60 days (Locy et al., 1995). Furthermore, successful tomato 
hypocotyl cultures have been developed on a medium containing 
2% glucose (Zelcer et al., 1984). Sucrose at concentration of 30 
g/L (compared to 5, 10, or 20 g/L) was considered optimal for the 
growth of tomato microplants (Schnapp and Preece, 1986). This 
concentration of sucrose has been used by most researchers in 
their media of initiation and multiplication (Compton and Veilleux, 
1988; Chen et al., 1999; Costa et al., 2000a; 2000b; Venkatachalam 
et al., 2000, Rai et al., 2012).

PGRs

PGRs are small organic molecules formed in specific tissues or 
organs. It is known that crop cultivation in vitro is impossible 
without PGRs (George, 1996). PGRs influence morphogenic 
response by altering specific physiological processes. 
For example, cytokinin and auxin treatment influence the 

accumulation of starch and the protein electrophoretic pattern 
in tomato cultures (Branca et al., 1994). A wide range of 
PGRs at different concentrations have been used for tomato 
regeneration. The concentration of the growth regulators 
used depends on the cultivar being cultured and the use of the 
specific cytokinin or auxin. The change in exposure period 
results in difference in the time needed for organogenesis and in 
the number of shoots developed on an explant (Padmanabhan 
et al., 1974; Cassells, 1979; Novak and Maskova, 1979; Ancora 
and Ramulu, 1981; Zapata et al., 1981; Chen et al., 1999; Costa 
et al., 2000a, 2000b; Venkatachalam et al., 2000). Plantlets 
are usually regenerated either directly (Dwivedi et al., 1990), 
or from the primary callus (Jawahar et al., 1997). Subculture 
of unorganized callus to a medium in which the cytokinin to 
auxins ratio is increased, or in which only cytokinin is present, 
leads to differentiation of the shoot (Gresshoff and Doy, 1972).

There are four main cytokinins, namely, zeatin, 2-iP, BA, and 
kinetin. They can be used for organogenesis in tomato either 
separately or together with auxins. Haploid shoots can be 
regenerated from the anther callus by transferring the callus 
from the high auxin (5.0 mg/L NAA) and low cytokinin 
(0.01 mg/L kin) medium to another medium containing low 
auxin and high cytokinin (0.1 mg/L NAA and 2.0 mg/L kin). 
Long-term callus cultivation was accomplished on a medium 
with low NAA concentrations of 1.0 mg/L (Imanishi et al., 
1976). Vnuchkova (1977a; 1977b) analyzed 150 different 
media and concluded that kinetin and IAA combinations (6.0 
mg−1 IAA and 5.0 mg/L kinetin or 5.0 mg/L IAA and 8.0 mg/L 
kinetin) are the most suitable for the formation of meristem in 
tomato explants. Gunay and Rao (1980) found that an IAA-BA 
combination for shoot regeneration was superior to the IAA- 
kinetin. Kartha et al. (1976) reported that BA or zeatin alone 
induced shoot formation from leaf callus. Zeatin and BA were 
also found superior to kinetin for tomato leaf explants to form 
shoots (Dhruva et al., 1978). Rai et al. (2012) reported that the 
highest regeneration and transformation frequency (30.89%) 
were found on MS medium supplemented with 9.3 μM Kin, 
8.9 μM BA, and 0.4 mg/L thiamine. Cassells (1979) reported 
that stem explants of tomato cv. Craigella cultured on a medium 
containing cytokinin produced adventitious shoots at the top of 
the explant. However, addition of the auxin-transport inhibitor 
TIBA stimulated caulogenesis with loss of polarity.

CONCLUSION AND FUTURE PROSPECTS

Tissue culture techniques are progressing rapidly in tomatoes. 
There is, however, still a long way to go before hybrid 
cultivars can be raised economically feasible through tissue 
culture. It is because of the unique genotypical necessity of 
PGRs and the availability of 100s of hybrid tomato cultivars. 
Various researchers used a wide variety of PGRs at varying 
concentrations for various tomato cultivars. Furthermore, 
various types of explants have also been used and the option of 
the correct explant is often based on genotypes. The literature 
fails to address many other difficulties faced during culture. The 
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latest literature on tomato organogenesis and micropropagation 
primarily discusses optimization of PGR type and concentration 
and explant type selection. The development of protocols 
for morphogenesis of commercially important cultivars 
involves an enhanced understanding of various physical and 
chemical factors. Techniques such as regeneration and somatic 
embryogenesis are necessary for the development of genetically 
engineered as well as genome edited plants from cells. Such 
techniques are also required to produce a great number of elite 
transgenic plants. There are numerous studies on tomato genetic 
instability under in vitro conditions, thus requiring evaluation 
of somaclonal variations resulting from tissue culture.

Due to the current anti-GMO consumer mindset, a wise 
combination of plant breeding, molecular biology, and tissue 
culture techniques should be introduced to exploit these fields 
for both the production and multiplication of new cultivars. 
Somaclonal variations arising from tissue culture can also be 
used to assist with tomato breeding.

There is enough potential in tissue culture techniques for the 
genetic improvement as well as tomato micropropagation. 
This ability can only be realized if unique cultivar specific 
morphogenesis protocols are developed.
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