International Journal of Agriculture, Environment and Biotechnology

Citation: IJAEB: 13(3): 323-337, September 2020

DOI: 10.30954/0974-1712.03.2020.8

GENETICS AND PLANT BREEDING

Nonparametric Measures of Stability Analysis Compared as Per BLUP & BLUE of Wheat Genotypes for Central Zone of Country

Ajay Verma* and G.P. Singh

ICAR-Indian Institute of Wheat & Barley Research, Post Bag # 158 Agrasain Marg, Karnal, Haryana, India

*Corresponding author: ajay.verma1@icar.gov.in (ORCID ID: 0000-0001-9255-6134)

Paper No. 853 **Received:** 12-04-2020 Revised: 17-07-2020 Accepted: 30-08-2020

ABSTRACT

Stability for wheat genotypes had been compared in Central Zone of the country as per the BLUP and BLUE of yield values. Measures based on ranks of BLUP for 2015-16 i.e. S_is identified G1, G5, G7, G6. Corrected yield measures CS_is pointed towards G1, G2, G5, G6. Values of NP_i(s) identified G1, G2, G7. Overall similarity among non-parametric measures tested by Kendall's coefficient of concordance. Positive correlations of S_i, CS_i & NP_i observed with other measures. Biplot analysis exhibited cluster of CV with CCV, S₁, S₂, S₃, S₅, S₇, S₁, S₅, S₆, NP₁(2), NP₁(3) & NP₁(4). Based on BLUE's of genotypes, S₁ found G1, G7, G4, G5 while CS_i identified G5, G4, G2 as opposed to G7, G1, G4 genotypes as by values NP_i(s). Positive and negative correlations exhibited by S, CS, & NP, (s) with the measures. Biplot analysis observed large cluster comprised of Yield with GAI, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾, S_i¹, S_i², S_i⁴S_i³, S_i⁵, S_i⁶ measures. Second year of study (2017-18) as per BLUP's seen, S_i's settled for G8, G7, G2 genotypes. While NP_i(s) settled for G1, G2, G8, G5. Negative correlations of yield had been observed with MR, CV, Med, NP, (2), NP, (3), NP, (4) while positive with GAI, CMR, CS.6. Measure CV expressed affinity with NP.(2), NP.(3) & NP.(4), SD, S.3, S.6, S.1, S.2, S.4, S.5, S, in Biplot analysis. Measures S, as per BLUE's pointed towards G2, G5, G8, G7 whereas CS, settled for G6, G8, G7. Wheat genotypes G8, G2, G7, G5 favoured by least values of NP_i(s). Positive correlation S_is, $CS_{i}^{s} \& NP_{i}^{(s)}$ with others. Large cluster of CCV, CSD, $NP_{i}^{(1)}$, S_{i}^{1} , S_{i}^{2} , S_{i}^{4} , CS_{i}^{1} , CS_{i}^{2} , CS_{i}^{3} , CS_{i}^{4} , CS_{i}^{5} , CS_{i}^{5} , CS_{i}^{6} , CS_{i}^{7} and Z1measures.

Highlights

- Stability of wheat genotypes had been compared as per the BLUP and BLUE of yield values for Central Zone of the country.
- Kendall's coefficient of concordance resulted an overall similarity among rank-based measures based on BLUP for first year. Positive correlations of rank-based measures based on BLUP viz. S_i, CS_i & NP_:(s) with other measures.
- While both type of correlations observed among measures as per BLUE of genotypes.
- First two PCA's based on BLUP's account for more of G×E sum of squares as compared to corresponding components by BLUE.

Keywords: BLUP, BLUE, S_i(s), CS_i(s), NP_i(s), Coefficient of concordance, Biplot analysis

Significant genotype-by-environment (G×E) interaction had been reported in large number of multi environmental studies (Pour et al. 2019). Cross over interaction masks the correlation between genotypic and phenotypic values of genotypes and hinders the selection of the promising genotypes (Mohammadi *et al.* 2016). Large number of statistical

approaches, based on univariate and multivariate models, have been observed in literature to estimate

How to cite this article: Verma, A. and Singh, G.P. (2020). Nonparametric Measures of Stability Analysis Compared as Per BLUP & BLUE of Wheat Genotypes for Central Zone of Country. IJAEB, 13(3): 323-337.

Source of Support: None; Conflict of Interest: None

stable performance of genotypes (Vaezi et al. 2018). There are two major categories to interpret genotypeenvironment interaction by numerical analysis. The first group contains parametric methods. These are primarily used to assess genotype stability by relating observed genotypic responses to number of environmental conditions (Khalili et al. 2016). Statistical assumptions i.e. normal distribution and homogeneity of variance of the errors and their interaction effectshave presumed under Parametric stability measures. Parametric measures would provide biased results under failure to satisfy these assumptions (Hühn and Leon 1995). The second group of analytical methods includes nonparametric methods. Non-parametric measures explain environments and phenotypes relative to both biotic and abiotic factors (Mortazavian et al. 2014). Ranks of the genotypes had been considered under Nonparametric measures to judge the suitability of genotypes (Nassar and Huhn 1987). These measures had been known as distribution free and no assumptions are required to satisfy (Rasoli et al. 2015). For many applications, including selection in breeding programs, the rank order of genotypes are the most essential data. There is ample justification for the use of nonparametric measures for the stability assessment of genotypes (Zali et al. 2011). Nonparametric procedures are based on the ranks of genotypes in each environment and stable genotypes possess similar ranking across environments (Farshadfar et al. 2014). Ranking classifies observations according to their values but not to their absolute differences. Different studies had used nonparametric measures of stability in the several literatures (Delić et al. 2009; Balalić et al. 2011; Karimizadeh et al. 2012; Mahtabi et al. 2013; Ahmadi et al. 2015; Rasoli et al. 2015; Khalili and Pour-Aboughadareh 2016).

The three defined objectives for current study was (1) analyse stability performance by nonparametric measures based on BLUP and BLUE of wheat genotypes yield (2) differentiate the performance pattern of wheat genotypes as per BLUP and BLUE values and (3) study the relationships, similarities and dissimilarities among non-parametric measures of stability.

MATERIALS AND METHODS

Seven promising wheat genotypes were evaluated

in research field trials at 14 centers of All India Coordinated Research Project on Wheat across zone during 2015-16 and a set of nine genotypes at twelve centers for 2017-18 cropping season. Randomized block designs had been laid out in field evaluation of genotypes with four replications. Recommended agronomical practices as per zone had followed in total to harvest the good wheat yield of genotypes. Parentage details and environmental conditions were reflected in tables 1 & 2 for ready reference. Huehn (1990 a & b) proposed seven nonparametric methods for assessing G×E interaction and stability analysis. For a two-way dataset with k genotypes and n environments X_{ii} denotes the phenotypic value of i^{th} genotype in j^{th} environment where i =1,2, ...k, j = 1, 2, ..., n and r_{ij} as the rank of the i^{th} genotype in the j^{th} environment, and \bar{r}_i as the mean rank across all environments for the i^{th} genotype. Sabaghnia et al. (2012) proposed the correction for yield of i^{th} genotype in j^{th} environment as $(X^*_{ii} = X_{ii} \overline{x}_{l}$. + \overline{x}_{l} .) as $X^*_{ii'}$ was the corrected phenotypic value; \overline{X}_i , was the mean of i^{th} genotype in all environments and \overline{X}_{i} .. was the grand mean. Generally used seven statistics based on ranks of genotypes yield and corrected yield were expressed as follows:

$$\begin{split} S_i^{(1)} &= \frac{2 \Sigma_j^{n-1} \Sigma_{j'=j+1}^n \left| \tau_{ij} - \tau_{iji} \right|}{\left[n(n-1) \right]} \quad S_i^{(7)} &= \frac{\sum_{j=1}^n (\tau_{ij} - \overline{\tau}_i)^2}{\Sigma_{j=1}^n |\tau_{ij} - \overline{\tau}_i|^2} \quad S_i^{(3)} &= \frac{\sum_{j=1}^n (\tau_{ij} - \overline{\tau}_i)^2}{\overline{\tau}_i} \\ S_i^{(4)} &= \sqrt{\frac{\sum_{j=1}^n (\tau_{ij} - \overline{\tau}_i)^2}{n}} \qquad S_i^{(5)} &= \frac{\sum_{j=1}^n |\tau_{ij} - \overline{\tau}_i|}{n} \quad S_i^{(6)} &= \frac{\sum_{j=1}^n |\tau_{ij} - \overline{\tau}_i|}{\overline{\tau}_i} \\ S_i^{(2)} &= \frac{\sum_{j=1}^n (\tau_{ij} - \overline{\tau}_{ij})^{-2}}{(n-1)} \qquad & \overline{\tau}_{i=}^{-1} \sum_{j=1}^n \tau_{ij}. \\ Z_i^{(9)} &= \frac{\left[S_i^{(9)} - E \left\{ S_i^{(9)} \right\} \right]^2}{Var \{ S_i^{(9)} \}}, v = 1, 2 \end{split}$$

Non parametric measures for stability analysis proposed by Thennarasu (1995) as $\mathrm{NP_i^{(1)}}$, $\mathrm{NP_i^{(2)}}$, $\mathrm{NP_i^{(3)}}$ and $\mathrm{NP_i^{(4)}}$ based on ranks of corrected means of genotypes. In the formulas, r^*_{ij} was the rank of $X^*_{ij'}$ and \bar{r}_l and M_{di} were the mean and median ranks for original (unadjusted) grain yield, where \bar{r}_l^* and M^*_{di} were the same parameters computed from the corrected (adjusted) data.

$$\begin{split} NP_i^{(1)} &= \frac{1}{n} \sum_{j=1}^n \left| \ r_{ij}^* - M_{di}^* \right| \\ NP_i^{(2)} &= \frac{\sqrt{\sum (r_{ij}^* - \bar{r}_{i}^*)^2 / n}}{\bar{r}_i.} \\ NP_i^{(2)} &= \frac{1}{n} \left(\frac{\sum_{j=1}^n \left| \ r_{ij}^* - M_{di}^* \right|}{M_{di}} \right) \\ NP_i^{(4)} &= \frac{2}{n(n-1)} \left[\sum_{j=1}^{n-1} \sum_{j'=j+1}^m \frac{\left| r_{ij}^* - r_{ijr}^* \right|}{\bar{r}_i.} \right] \end{split}$$

Significance of S_i⁽¹⁾ and S_i⁽²⁾ non parametric measures had been explored by Nassar and Huehn (1987). Z1 and Z2 values were calculated for each genotype,

Table 1: Parentage details of wheat genotypes along with environmental conditions (2015-16)

Code	Genotype	Parentage	Code	Environments	Latitude	Longitude	Altitude (m)
G 1	HI8759	(H18663/HI8498)	E 1	Amreli	21° 36′ N	71° 13′ E	126
G 2	HI8774	(HI8663/HI8498)	E 2	Bhopal	23° 15′ N	77° 24′ E	496
G 3	PDW344	(GREEN/RXD-130)	E 3	Banswara	23° 32′ N	74° 26′ E	216
G 4	HI8498	(RAJ6O7O/RAJ91 1)	E 4	Indore	22° 43′ N	75° 51′ E	550
G 5	HI8737	(HI817 7 /HI81 58//H I8498)	E 5	Junagarh	21° 30′ N	70° 27′ E	90
G 6	MPO1215	(GW1 1 1 3/GW1 1 1 4//HI8381)	E 6	Jabalpur	23° 10′ N	79° 55′ E	403
G 7	HD4728	(A LTAR84/S T I N T//S I L V E R_4 5/ 3/SOM AT _ 3 . 1 /4 /GREEN_14//YAV_10/AUK) GIREEN_1 4 INAV_10/AUK)	E 7	Kota	25° 21′ N	75° 86′ E	271
			E 8	Powarkheda	22° 70′ N	77° 73′ E	308
			E 9	Rewa	24°53′ N	81°30 'E	304
			E 10	Sagar	23° 50 ′ N	78° 44 ′ E	525
			E 11	SK Nagar	21°18′ N	72°85′ E	11
			E 12	Sanosara	21° 72 ′ N	71° 76′ E	89
			E 13	Udaipur	24° 34′ N	73° 41′ E	585
			E 14	Vijapur	23°33′ N	72°45′ E	129.4

Table 2: Parentage details of wheat genotypes along with environmental conditions (2017-18)

Code	Genotype	Parentage	Code	Environments	Latitude	Longitude	Altitude (m)
G 1	GW1339	(DDW04/4/MEMO/YAV//AVK/3/RD214)	E 1	Amreli	21° 36′ N	71° 13′ E	126
G 2	AKAW4924	(DL-9-65-2/AKW1071-1-2)	E 2	Bhopal	23° 15′ N	77° 24′ E	496
G 3	GW495	(LOK54/RAJ4083)	E 3	Bilaspur	22° 4′ N	82° 9′ E	264
G 4	UAS465	(STOT//ALTAR84/ALD*2/3/AUK/GUIL//GREEN)	E 4	Banswara	23° 32′ N	74° 26′ E	216
G 5	MPO1343	(HG822/HI8498)	E 5	Gwalior	26° 13′ N	78° 10′ E	213
G 6	GW322	(PBW173/GW196)	E 6	Indore	22° 43′ N	75° 51′ E	550
G 7	HI8713	(HD4672/PDW233)	E 7	Junagarh	21° 30′ N	70° 27′ E	90
G 8	HI8737	(HI8177/HI8158//HI8498)	E 8	Jabalpur	23° 10′ N	79° 55′ E	403
G 9	HI1544	(HINDI62/BOBWHITE/CPAN2099)	E 9	Powarkheda	22° 70 N	77° 73 E	308
			E 10	SK Nagar	21°18′ N	72°85 E	11
			E 11	Udaipur	24° 34′ N	73° 41′ E	585
			E 12	Vijapur	23°33′ N	72°45′ E	129.4

based on the ranks of adjusted data and then sum of i.e. Z_1 sum and Z_2 sum are distributed as χ^2 . Degree of similarity among measures had assessed by estimating correlation coefficients while considering genotypes ranking. Spearman's rank correlation values among pairs (Piephoand Lotito 1992) estimated as follows:

$$\overline{r}_S = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

where d_i denotes difference between ranks for i^{th} genotype and n is total number of pairs.

RESULTS AND DISCUSSION

First year of study 2015-16

Analytic analysis as per BLUP's

Mean wheat yield observed, G5 as the highest yielding with 58q/ha followed by G2 and G4, though remarkable yield differences were observed among the genotypes (Table 3). Measure GAI selected G5, G2, G6 as genotypes with higher adaptable index values. The following three descriptive statistics; mean of ranks (MR), standard deviation of ranks

Print ISSN: 1974-1712 325 Online ISSN: 2230-732X

Table 3: Nonparametric measures as per yield of genotypes (BLUP)

Genotype	Yield	GAI	MR	SD	CV	Med	S _i ¹	S_i^2	S_i^3	S _i ⁴	S _i 5	S, 6	S_i^7	CMR	CSD
HI8759	45.64	44.86	5.14	1.23	0.24	6.00	1.23	1.52	3.83	1.19	0.98	2.67	1.44	4.14	1.70
HI8774	50.38	49.15	4.00	1.75	0.44	4.50	2.01	3.08	10.00	1.69	1.43	5.00	2.00	4.79	1.97
PDW344	49.11	48.45	3.43	2.10	0.61	3.00	2.44	4.42	16.75	2.03	1.86	7.58	2.21	3.43	2.38
HI8498	49.51	48.62	3.36	1.82	0.54	3.00	1.99	3.32	12.87	1.76	1.32	5.49	2.34	3.57	1.91
HI8737	51.84	50.87	2.36	1.50	0.64	2.00	1.58	2.25	12.39	1.44	1.08	6.42	1.93	4.43	1.65
MPO1215	49.38	48.70	3.50	1.34	0.38	4.00	1.49	1.81	6.71	1.30	1.07	4.29	1.57	3.57	1.74
HD4728	39.55	38.28	6.21	1.76	0.28	7.00	1.40	3.10	6.49	1.70	1.23	2.78	2.33	4.07	2.59

Table 4: Nonparametric measures as per corrected yield of genotypes (BLUP)

Genotype	CCV	CMed	CS _i ¹	CS_i^2	CS _i ³	CS _i ⁴	CS _i ⁵	CS _i ⁶	CS _i ⁷	NP _i (1)	$NP_i^{(2)}$	NP _i (3)	NP _i (4)	Z 1	Z 2
HI8759	0.41	3.50	1.92	2.90	9.10	1.64	1.47	4.97	1.83	1.43	0.28	1.19	0.37	1.38	1.17
HI8774	0.41	5.00	2.25	3.87	10.52	1.90	1.56	4.57	2.30	1.50	0.38	1.77	0.56	0.01	0.02
PDW344	0.69	3.00	2.74	5.65	21.42	2.29	2.06	8.42	2.54	2.00	0.58	2.50	0.80	2.13	2.63
HI8498	0.53	3.50	2.25	3.65	13.28	1.84	1.57	6.16	2.16	1.57	0.47	2.05	0.67	0.01	0.12
HI8737	0.37	4.00	1.91	2.73	8.00	1.59	1.35	4.26	1.88	1.29	0.55	2.53	0.81	1.47	1.57
MPO1215	0.49	4.00	2.03	3.03	11.04	1.68	1.49	5.84	1.89	1.43	0.41	1.79	0.58	0.67	0.91
HD4728	0.64	4.00	2.95	6.69	21.35	2.49	2.36	8.11	2.63	2.36	0.38	1.50	0.47	4.57	6.99
	E(S1)	2.29	Var (S1)	0.095				W =	0.4015	χ^2	= 72.27	χ^2 (0.05, 1)	= 3.84	$\Sigma = 10.25$	13.40
	E(S2)	4.00	Var (S2)	1.033											

(SD) and coefficient of variation of ranks (CV) were calculated for original ranks (Khalili *et al.* 2016). MR pointed towards G7, G1, G2 and SD for G1, G6, G5 whereas CV for G1, G7, G6 as genotypes of stable performance, while G5, G4 based on MR, G3, G4 based on SD and G5, G3 as per CV, would be unstable genotypes. These descriptive statistics based on ranks can be used for genotype comparative evaluation. Values of Median selected G7, G1, G2 genotypes.

Seven nonparametric measures based on original grain yield of genotypes $(S_i^1, S_i^2, S_i^3, S_i^4, S_i^5, S_i^6 \text{ and } S_i^7)$ indicated that (G1, G7, G6), (G1, G6, G5), (G1, G7, G6), (G1, G6, G5), (G1, G6, G5), (G1, G7, G6), (G1, G6, G5) as sets of genotypes respectively. According to corrected yield (table 8), G2, G5 & G1 by mean of corrected ranks (CMR), G5, G1 & G6 by standard deviation of corrected ranks (CSD) and G5, G1 & G2 were the stable as per coefficient of variation of corrected ranks (CCV). Nonparametric measures of stability based on corrected yield values (CS₁, CS₂, CS₃, CS₄, CS₅, CS₆, CS₇) identified stable genotypes (G5, G1, G6), (G5, G1,G6), (G5, G1, G2), (G5, G1, G6), (G5, G2, G1), (G5, G2, G1), (G1, G5, G6) and G7, G3 were of unstable nature (Sabaghnia *et al.* 2012). NP_i⁽¹⁾ considered genotypes G5, G1, G6 of stable yield. G1, G2 and G7 had expressed the lower values of NP_:⁽²⁾ whereas as per NP_i⁽³⁾ & NP_i⁽⁴⁾ values genotypes G1, G7, G2 would be of stable performance. Z1 and Z2 pointed for G2, G4, G6 as of suitable performance.

Calculated value of Kendall's coefficient of concordance (W=0.40) and for the significance of W value the magnitude of χ^2 = 72.3 statistics was less than table of χ^2 (0.01, 290) = 135.8, which resulted an overall similarity among non-parametric measures (Vaezi et al. 2018). For ensuring significance of CS_i and CS_i measures, Z1 and Z2 values were calculated based on the ranks of adjusted data and then summed: Z_1 sum = 10.3 and Z_2 sum = 13.4 (Table 4). Both these statistics are distributed as χ^2 and were less than the critical value of χ^2 (0.05, 29) = 42.6. This indicated the non-significant differences among genotypes as per ranks of CS₁ and CS₂ measures. HD4728 was significantly unstable as compared to others due to Z values more than the critical value of χ^2 (0.05, 1) = 3.84.

Association analysis

Spearman's rank correlation analysis as per BLUP's of genotypes yield had been reflected in table 11. Yield had positive correlation with GAI, CMR, CSD, CCV, Z1, Z2 CS_i¹, CS_i², CS_i³, CS_i⁴, CS_i⁵, CS_i⁶, NP_i⁽¹⁾ and negative correlation with MR, CV, Med,

S_i, S_i, S_i, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾. GAI mentioned negative correlations with MR, CV, Med, S₁, S₂, S₅. Value of MR expressed mostly significant positive correlations with CV, Med, S_i³, S_i⁶, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾. Significant positive correlation maintained by SD with S₁, S₂, S₃, Si⁴, Si⁵, S₇, CSD, CCV, CS₁, CS₂, CS₃, CS_i⁴, CS_i⁵, CS_i⁶, CS_i⁷, NP_i⁽¹⁾ values. Similar behaviour portrayed by CV values. Median had expressed significant values for positive correlations. S₁, S₂, S₃, S_i, S_i, S_i, S_i, S_i, S_i exhibited direct relations of significant nature among themselves and with other measures. Measures CMR, CSD, CCV and CMed expressed positive correlations with most of the measures besides few weak negative correlations with NP_i⁽²⁾, NP⁽³⁾, NP⁽⁴⁾. Similar behaviour expressed by CS¹, CS_i², CS_i³, CS_i⁴, CS_i⁵, CS_i⁶, CS_i⁷ and expressed only significant positive relationships. NP_i⁽¹⁾, NP_i⁽²⁾, NP_i⁽³⁾, NP, (4) had also expressed only significant direct relationships. Z1 is related to Z2 in weak inverse manner.

Graphical analysis based on biplot

The loadings of measures based on first two significant principal components were reflected in table 12 (Mohammadi *et al.* 2016). Both significant PAC's accounting for 85.9% of the variance of the original variables (Fig. 1). Grouping of Yield with GAI, MR grouped with Med in addition to affinity of CMR towards CMed. Cluster comprises of Z1 & Z2 with NP_i⁽¹⁾, CSD, CS_i¹, CS_i², CS_i³, CS_i⁴, CS_i⁵, CS_i⁶ and CS_i⁷ was observed. CV expressed affinity with CCV, S_i¹, S_i², S_i⁴, S_i⁵, S_i⁷, S_i³, S_i⁶, NP_i⁽²⁾, NP_i⁽³⁾ & NP_i⁽⁴⁾ as separate cluster.

FIRST YEAR OF STUDY 2015-16

Analytic analysis as per BLUE's

Average yield of genotypes showed G5 as of highest yield with 58 q/ha followed by G2 and G6, genotypes (Table 7). Measure GAI selected G5, G6,

				_						_	_				
Genotype	Yield	GAI	MR	SD	CV	Med	S _i ¹	S _i ²	S_i^3	S _i ⁴	$\mathbf{S_{i}}^{5}$	S, 6	S_i^7	CMR	CSD
HI8759	50.31	49.85	4.71	1.64	0.35	5.50	1.76	2.68	7.39	1.58	1.37	4.06	1.82	4.07	2.06
HI8774	55.17	54.19	3.79	1.97	0.52	4.50	2.27	3.87	13.30	1.90	1.67	6.19	2.15	4.43	1.83
PDW344	54.18	53.59	3.79	1.85	0.49	3.50	2.14	3.41	11.72	1.78	1.50	5.55	2.11	3.50	2.41
HI8498	54.56	53.79	3.50	1.61	0.46	4.00	1.81	2.58	9.57	1.55	1.29	5.14	1.86	3.93	1.69
HI8737	57.11	56.37	2.57	1.65	0.64	2.00	1.76	2.73	13.78	1.59	1.22	6.67	2.07	4.29	1.64
MPO1215	55.06	54.66	3.21	1.85	0.57	3.50	2.14	3.41	13.80	1.78	1.64	7.16	1.93	3.79	2.19
HD4728	43.27	42.30	6.43	1.16	0.18	7.00	0.99	1.34	2.71	1.12	0.90	1.96	1.39	4.00	2.42

 Table 5: Nonparametric measures as per yield of genotypes (BLUE)

Genotype	CCV	CMed	CS _i ¹	CS _i ²	CS _i ³	CS _i ⁴	CS _i ⁵	CS _i ⁶	CS,7	NP _i (1)	NP _i (2)	NP _i (3)	NP _i (4)	Z 1	Z 2
HI8759	0.50	4.00	2.38	4.23	13.49	1.98	1.66	5.72	2.36	1.64	0.35	1.57	0.51	0.10	0.05
HI8774	0.41	5.00	2.13	3.34	9.81	1.76	1.51	4.77	2.05	1.43	0.38	1.74	0.56	0.25	0.42
PDW344	0.69	3.00	2.74	5.81	21.57	2.32	2.07	8.29	2.60	1.93	0.51	2.30	0.72	2.13	3.16
HI8498	0.43	4.00	1.97	2.84	9.40	1.62	1.37	4.87	1.93	1.36	0.39	1.74	0.56	1.07	1.30
HI8737	0.38	4.00	1.91	2.68	8.13	1.58	1.33	4.33	1.88	1.29	0.50	2.30	0.74	1.47	1.68
MPO1215	0.58	4.50	2.54	4.80	16.47	2.11	1.96	7.25	2.27	1.93	0.60	2.46	0.79	0.67	0.61
HD4728	0.60	4.00	2.81	5.85	19.00	2.33	2.00	7.00	2.71	2.00	0.31	1.36	0.44	2.93	3.30
						W=	= 0.2360	χ	$^{2} = 42.48$;		χ^2 (0.05, 1)	= 3.84	$\Sigma = 18.87$	23.93

Table 7: Nonparametric measures as per yield of genotypes (BLUP)

Genotype	Yield	GAI	MR	SD	CV	Med	S_i^1	S_i^2	S_i^3	S_i^4	S_i^5	S_i^6	S_i^7	CMR	CSD
GW1339	50.86	50.22	4.50	2.11	0.47	4.00	2.39	4.45	10.89	2.02	1.58	4.22	2.58	4.08	2.23
AKAW4924	49.34	48.12	6.50	1.83	0.28	6.50	2.12	3.36	5.69	1.76	1.50	2.77	2.06	4.92	2.47
GW495	52.34	51.69	3.92	3.29	0.84	2.00	3.68	10.81	30.36	3.15	2.90	8.89	3.41	5.17	3.01
UAS465	50.35	49.06	5.50	3.00	0.55	5.50	3.52	9.00	18.00	2.87	2.50	5.45	3.30	5.08	3.26
MPO1343	50.16	49.18	5.75	2.34	0.41	6.50	2.68	5.48	10.48	2.24	1.96	4.09	2.56	5.42	2.35
GW322	52.24	51.38	3.33	2.42	0.73	2.50	2.73	5.88	19.40	2.32	1.94	7.00	2.77	5.17	2.33
HI8713	51.84	50.99	4.08	1.73	0.42	4.00	1.95	2.99	8.06	1.66	1.29	3.80	2.12	5.58	2.31
HI8737	49.59	48.79	5.75	1.48	0.26	5.50	1.71	2.20	4.22	1.42	1.25	2.61	1.62	4.67	2.10
HI1544	49.40	48.40	5.67	3.37	0.59	6.50	3.88	11.33	22.00	3.22	2.89	6.12	3.60	4.92	3.50

Print ISSN: 1974-1712 327 Online ISSN: 2230-732X

G2 based on higher adaptable index values. MR pointed towards G7, G1, G2 and SD for G7, G4, G1 whereas CV for G7, G1, G4 as genotypes of stable performance, while G5, G6 based on MR, G7, G4 based on SD and G5, G6 as large values of CV, would be unstable genotypes. Median selected G7, G1, G2 wheat genotypes for considered locations of this zone.

 S_i^1 , S_i^2 , S_i^3 , S_i^4 , S_i^5 , S_i^6 and S_i^7 indicated that (G7, G1, G5), (G7, G4, G1), (G7, G1, G4), (G7, G4, G1), (G7, G5, G4), (G7, G1, G4), (G7, G1, G4) as sets of desirable genotypes as per respective measure. G2, G5 & G1 by CMR values, G5, G4 & G2 by CSD and G5, G2 & G4 were the stable as per CCV. Median favoured G2, G6, G1 genotypes. CS₁, CS₂, CS₃, CS₄, CS₁, CS₁, CS₂ identified stable genotypes (G5, G4, G2) and G7, G3 were of unstable type as per these nonparametric measures. NP_i⁽¹⁾ considered G5, G4 and G2 as desirable genotypes. Genotypes G7, G1 and G2 had expressed the lower values of NP_i⁽²⁾, while as per lower values of NP_i⁽³⁾ & NP_i⁽⁴⁾, G7, G1, G4 and lastly by Z1 and Z2 values selected G1, G2, G6 as suitable as well as G7 & G3 would be of unsuitable performance.

Calculated value of W (0.23) and for its significance χ^2 = 42.5 statistics was less than table of χ^2 (0.01, 290) = 135.8, which resulted an overall similarity among non-parametric measures. Values of Z_1 sum = 18.9 and Z_2 sum = 23.9 (Table 4) are distributed as χ^2 and were less than the critical value of χ^2 (0.05, 29) = 42.6. This indicated the non-significant differences among genotypes as per ranks of CS₁ and CS₂ measures.

Association analysis

Yield has expressed highly significant positive correlation with GAI, CSD, CCV, CS_i¹, CS_i², CSi³, CS_i⁴, CS_i⁵, CS_i⁶, CS_i⁷, NPi⁽²⁾ along with negative correlation with other measures (table 18). GAI showed positive with CSD, CCV, CS_i¹, CS_i², CS_i³, CS_i⁴, CS_i⁵, CS_i⁶, CS_i⁷, NP_i⁽²⁾. Values of MR expressed positive correlation with CV, Med, S_i³, S_i⁶, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾. SD maintained only highly significant and significant positive correlations with almost all the measures. CV measure also showed significant positive correlation and negative correlation of moderate to weak nature. Same type of relations was depicted by Median. S_i¹, S_i², S_i³, S_i⁴, S_i⁵, S_i⁶, S_i⁷ exhibited indirect relations only with CS_i⁷, Z1, Z2,

										(1)	(2)	(2)	(1)		
Genotype	CCV	CMed	CS _i ¹	CS_i^2	CS_i^3	CS_{i}^{4}	CS _i ⁵	CS _i ⁶	CS_i^7	NP _i (1)	$NP_{i}^{(2)}$	$NP_i^{(3)}$	NP _i (4)	Z1	Z 2
GW1339	0.55	4.00	2.53	4.99	13.45	2.14	1.60	4.69	2.87	1.58	0.35	1.65	0.56	0.95	0.80
AKAW4924	0.50	4.50	2.92	6.08	13.61	2.36	2.08	5.08	2.68	2.08	0.32	1.26	0.45	0.01	0.10
GW495	0.58	5.00	3.55	9.06	19.29	2.88	2.67	6.19	3.11	2.67	0.68	2.55	0.91	1.72	1.63
UAS465	0.64	5.00	3.77	10.63	23.00	3.12	2.61	6.16	3.73	2.58	0.47	1.97	0.69	3.33	4.45
MPO1343	0.43	6.00	2.74	5.54	11.25	2.25	2.08	4.62	2.44	2.08	0.36	1.36	0.48	0.25	0.36
GW322	0.45	6.00	2.73	5.42	11.55	2.23	1.97	4.58	2.52	1.83	0.55	2.32	0.82	0.28	0.44
HI8713	0.41	5.50	2.68	5.36	10.55	2.22	1.92	4.12	2.56	1.92	0.47	1.88	0.66	0.40	0.49
HI8737	0.45	5.00	2.42	4.42	10.43	2.01	1.83	4.71	2.21	1.83	0.32	1.21	0.42	1.47	1.43
HI1544	0.71	5.50	4.05	12.27	27.44	3.35	3.10	7.56	3.63	3.08	0.54	2.05	0.71	5.95	8.89
	E(S1)	2.96	Var(S1)	0.197			W=	0.4619	χ^2	2 = 110.85		χ^2 (0.05, 1)	= 3.84	$\Sigma = 14.36$	18.57
	E(S2)	6.67	Var (S2)	3.525											

Table 8: Nonparametric measures as per corrected yield of genotypes (BLUP)

Table 9: Nonparametric measures as per yield of genotypes (BLUE)

Genotype	Yield	GAI	MR	SD	CV	Med	$\mathbf{S_{i}^{1}}$	S_i^2	S_i^3	S_{i}^{4}	S_i^5	S_i^6	$\mathbf{S_{i}}^{7}$	CMR	CSD
GW1339	50.53	49.87	5.00	2.63	0.53	5.00	3.09	6.91	15.20	2.52	2.33	5.60	2.71	4.75	2.80
AKAW4924	49.13	47.85	6.42	1.78	0.28	6.00	2.11	3.17	5.44	1.71	1.49	2.78	1.96	4.42	2.68
GW495	52.57	51.90	3.92	3.15	0.80	3.00	3.56	9.90	27.81	3.01	2.74	8.38	3.32	5.00	3.05
UAS465	50.66	49.31	4.67	3.03	0.65	3.50	3.48	9.15	21.57	2.90	2.61	6.71	3.21	4.83	2.98
MPO1343	50.08	48.96	5.42	2.35	0.43	5.00	2.71	5.54	11.25	2.25	1.82	4.03	2.79	5.17	2.52
GW322	52.57	51.69	3.50	2.24	0.64	3.00	2.55	5.00	15.71	2.14	1.75	6.00	2.62	5.25	2.30
HI8713	52.26	51.35	3.83	2.04	0.53	3.50	2.36	4.15	11.91	1.95	1.67	5.22	2.28	5.58	2.15
HI8737	48.91	48.09	5.92	1.98	0.33	6.50	2.29	3.90	7.25	1.89	1.60	3.24	2.24	5.00	2.22
HI1544	49.41	48.43	6.08	2.68	0.44	7.00	3.08	7.17	12.97	2.56	2.24	4.41	2.94	5.00	3.19

Table 10: Nonparametric measures as per corrected yield of genotypes (BLUE)

Genotype	CCV	CMed	1 CS _i ¹	CS _i ²	CS _i ³	CS _i ⁴	CS _i CS _i 6	CS _i ⁷	NP _i (1)	NP _i (2)	NP _i (3)	NP _i (4)	Z 1	Z2
GW1339	0.59	4.50	3.32	7.84	18.16	2.68	2.42 6.11	2.97	2.42	0.48	1.86	0.66	0.64	0.39
AKAW4924	0.61	4.00	3.17	7.17	17.87	2.56	2.15 5.85	3.05	2.08	0.32	1.38	0.49	0.21	0.07
GW495	0.61	5.50	3.55	9.27	20.40	2.92	2.67 6.40	3.19	2.67	0.68	2.58	0.91	1.72	1.93
UAS465	0.62	4.00	3.45	8.88	20.21	2.85	2.47 6.14	3.29	2.33	0.50	2.12	0.74	1.23	1.39
MPO1343	0.49	5.00	2.97	6.33	13.48	2.41	2.03 4.71	2.86	2.00	0.37	1.54	0.55	0.00	0.03
GW322	0.44	5.50	2.68	5.30	11.10	2.20	1.92 4.38	2.53	1.92	0.55	2.18	0.77	0.40	0.53
HI8713	0.39	5.50	2.56	4.63	9.12	2.06	1.75 3.76	2.42	1.75	0.46	1.86	0.67	0.82	1.18
HI8737	0.44	5.00	2.58	4.91	10.80	2.12	1.67 4.00	2.70	1.67	0.28	1.24	0.44	0.76	0.88
HI1544	0.64	6.50	3.64	10.18	22.40	3.06	2.83 6.80	3.29	2.67	0.44	1.74	0.60	2.30	3.51
	E(S1)	2.96	Var(S1)	0.197			W = 0.4215	χ	$^{2} = 101.17$	7	χ^2 (0.05, 1	= 3.84	$\Sigma = 8.08$	9.90
	E(S2)	6.67	Var(S2)	3.525			·							

 $NP_{i}^{\,(1)}.$ Negative correlations of weak nature by CMR, CSD, CCV, CMed with $NP_{i}^{\,(2)},\,NP_{i}^{\,(3)},\,NP_{i}^{\,(4)}$ only. $CS_{i}^{\,1},\,CS_{i}^{\,2},\,CS_{i}^{\,3},\,CS_{i}^{\,4},\,CS_{i}^{\,5},\,CS_{i}^{\,6},\,CS_{i}^{\,7}$ also expressed only weak indirect relations with $NP_{i}^{\,(2)},\,NP_{i}^{\,(3)},\,NP_{i}^{\,(4)}$ measures. Significant positive relationships of $NP_{i}^{\,(1)},\,NP_{i}^{\,(2)},\,NP_{i}^{\,(3)},\,NP_{i}^{\,(4)}$ obtained with few negative values of lower magnitude.

Graphical analysis based on biplot

Table 16 mentioned the values of loadings of measures as per the first two principal components axes (PCA) as 84.8% variations of measures accounted by these two in Fig. 3. Smaller clusters of only two measures i.e. MR with Med and CMR with CMed were observed in biplotgraphical analysis. Yield with GAI, $NP_i^{(2)}$, $NP_i^{(3)}$, $NP_i^{(4)}$, S_i^1 , S_i^2 , S_i^4 , S_i^3 , S_i^5 , S_i^6 clustered in a group. Z1, Z2expressed affinity with, SD, CCV, CSD, $NP_i^{(1)}$, CS_i^1 , CS_i^2 , CS_i^3 , CS_i^4 , CS_i^5 , CS_i^6 , CS_i^7 inlarge cluster.

SECOND YEAR OF STUDY 2017-18

Analytic analysis as per BLUP's

High yield achieved by G3 followed by G6, G7 wheat genotypes, whereas GAI selected G3, G6, G7 genotypes, large values of mean ranks selected G2, G5, G8 more over the consistent yield of G8, G7, G2 expressed by least values of standard deviation (Table 9). Values of coefficient of variation anticipated G8, G5, G2 would be genotypes of least variations; Median observed suitability of G2, G5, G9 wheat genotypes for studied locations of central zone. S_i¹ and S_i² measures selected G8, G7, G2 as opposed to G8, G2, G7 by S_i³ measure. Next two measures S_i⁴ & S_i⁵ settled for G8, G7, G2 and remaining two measures S_i⁶ and S_i⁷ favoured G8, G2, G7 wheat genotypes.

Average mean of ranks as per corrected yield values selected G7, G5, G6 and corrected standard deviation observed suitability of G8, G1, G7 genotypes. Coefficient of variation as per corrected yield values exhibited G7, G5, G8 while median values for G5, G6, G7 and G8, G1, G7 by CS_i¹ & CS_i², CS_i³ pointed for G8, G7, G5 & as per CS_i⁴ wheat genotypes G8 G1 G7, G1 G8 G7 by criterion of CS_i⁵ & CS_i⁶ settled for G7 G6 G5 and lastly by values of CS_i⁷ genotypes G8, G5, G6 (table 10). NP_i⁽¹⁾ selected (G1, G6, G8); NP_i⁽²⁾ identified (G8, G2, G1), NP_i⁽³⁾ & NP_i⁽⁴⁾ settled for (G8, G2, G5), whereas G4 along with G6 would be of unsuitable type. Z1 and Z2 favoured G2, G5, G6 wheat genotypes.

Concordance coefficient W=0.46 and for its significance χ^2 = 110.8 statistic was less than table of χ^2 (0.05, 290) = 124.3 (135.8), which resulted an overall similarity among non-parametric measures. Values of Z_1 sum = 14.4 and Z_2 sum = 18.6 (Table 10) were less than the critical value of χ^2 (0.05, 29) = 42.6. This indicated the non-significant differences among genotypes as per ranks of CS_1^1 and CS_2^2 measures. Unstable performance of HI1544 & UAS 465 judged by larger values as compared to the critical value of χ^2 (0.05, 1) = 3.84.

Association analysis

Spearman's rank correlation analysis observed highly significant negative correlations of yield with MR, CV, Med, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾ and positive with GAI, CMR, CS_i⁶ (Table 15). GAI showed mostly significant negative correlations and positive values with CMR, CSD, CCV, CS_i⁶. Significant direct relations maintained by MR along with few negative values of low magnitude. SD & CV maintained highly significant direct relations with almost

Print ISSN: 1974-1712 329 Online ISSN: 2230-732X

 Table 11: Spearman's rank correlation coefficient values among nonparametric measures (2015-16) BLUP

					- 1			İ			ı															
Yield G.	GAI MR	IR SD	CV	Med	l S _i ¹	S_i^2	$\mathbf{S}_{\mathbf{i}}^{3}$	S _i ⁴ S		$S_i^6 S_i^7$	İ	CMR CSD	ACC C	' CMed	d CS ₁	CS_i^2	CS_i^3	CS_i^4	CS_i^5	CS _i e	CS_{i}^{7}	NP _i (1)	NP _i ⁽²⁾ N	NP _i (3) NP _i (4)	(4) Z1	Z2
0.5	964 -0.	$0.964 \ -0.750 \ 0.036 \ -0.714 \ -0.661 \ -0.500 \ 0.036 \ -0.500 \ 0.036 \ -0.179 \ -0.571 \ 0.036 \ 0.482$	6 -0.71	4 -0.66	51 -0.500	0.036	-0.500	0.036	0.179 -().571 0.	036 0.4	482 0.500	0 0.536	5 0.286	0.446	0.500	0.536	0.500	0.536	629.0	0.321	0.661	-0.321 -(-0.643 -0.6	-0.643 0.589	0.571
GAI 1.0	.000 -0.	1.000 -0.679 0.179 -0.643 -0.625 -0.429 0.179	.9 -0.64	3 -0.62	5 -0.429	9 0.179	-0.393	-0.393 0.179 -0.071	0.071 -(-0.500 0.3	0.214 0.4	0.482 0.536	6 0.571	0.393	0.518	3 0.536	0.571	0.536	0.607	0.714	0.357	0.732	-0.286 -0.607	709.0- 709.0	07 0.554	0.536
MR	1.(1.000 0.250 0.893 0.982	0 0.893	. 0.982		0.536 0.250 0.786 0.250 0.214	0.786	0.250 0		0.821 0.	0.143 0.1	0.196 -0.464	64 -0.179	9 0.143		-0.411 -0.464	4 -0.179	9 -0.464	-0.357	-0.214	-0.286	-0.179 -0.464 -0.357 -0.214 -0.286 -0.375 0.786		0.929 0.929	29 -0.125	5 -0.179
SD		1.00	1.000 0.500	0.232	2 0.714	1.000	0.750	1.000 0.893		0.643 0.3	0.893 0.5	0.554 0.714	4 0.786	5 0.357	, 0.768	3 0.714	0.786	0.714	0.786	0.679	0.786	0.732 (0.607	0.429 0.429	29 0.304	0.214
CV			1.000	0.911	1 0.750	0.500	0.500 0.893	0.500 0.536		0.964 0.3	0.321 0.1	0.161 -0.143	43 0.000	0.071	-0.125	5 -0.14	-0.143 0.000	-0.143	-0.143 -0.107 -0.107 0.071	-0.107		-0.161 0.857		0.964 0.964	54 0.089	0.000
Med				1.000	0.554	0.232	0.768	0.232 0.232		0.839 0.	0.089 0.2	0.214 -0.411	11 -0.161	1 0.161	-0.393	3 -0.411		-0.161 -0.411	-0.339	-0.196	-0.232	-0.357	0.804 0	0.946 0.946	46 0.000	-0.054
S_i^1					1.000	0.714	0.714 0.893	0.714 0.893		0.857 0.	0.464 0.2	0.268 0.321	1 0.357	7 0.179	0.339	0.321	0.357	0.321	0.286	0.179	0.429	0.232	0.607	0.643 0.643	43 -0.089	9 -0.250
S_i^2						1.000	1.000 0.750 1.000 0.893	1.000 0		0.643 0.3	0.893 0.5	0.554 0.714	4 0.786	5 0.357	, 0.768	3 0.714	0.786	0.714	0.786	0.679	0.786	0.732	0.607	0.429 0.429	29 0.304	0.214
S_{i}^{3}							1.000	0.750 0.750		0.964 0.	0.536 0.4	0.446 0.143	3 0.357	7 0.357	, 0.196	0.143	0.357	0.143	0.214	0.250	0.286	0.161	0.857 0	0.857 0.857	57 0.018	-0.071
$^{4}_{i}$								1.000 0.893		0.643 0.	0.893 0.5	0.554 0.714	4 0.786	5 0.357	, 0.768	3 0.714	0.786	0.714	0.786	629.0	0.786	0.732 (0.607	0.429 0.429	29 0.304	0.214
\hat{S}_{i}								1	1.000 0.	0.679 0.	0.714 0.3	0.304 0.679	6 0.607	7 0.179	969.0	6.0.679	0.607	0.679	0.643	0.429	0.750	0.589	0.464 0	0.393 0.393	93 0.125	-0.036
$\mathring{S}_{i}^{\epsilon}$									1.	1.000 0.3	0.393 0.3	0.339 0.036	6 0.214	1 0.250	0.054	0.036	0.214	0.036	0.071	0.107	0.214	0.018	0.893 0.	0.929 0.929	29 0.125	0.036
S_i^7										1.	1.000 0.3	0.375 0.679	629.0 6.	9 0.107	, 0.768	9.00 8	0.679	0.679	0.786	0.571	0.750	0.732 (0.393 0.	0.250 0.250	50 0.196	0.107
CMR											1.(1.000 0.411	1 0.804	1 0.696	0.429	0.411	0.804	0.411	0.554	0.875	0.375	0.571	0.589 0	0.304 0.304	04 0.393	0.411
CSD												1.000	0 0.857	7 0.036	0.982	1.000	0.857	1.000	0.964	0.750	0.964	0.946	0.036 -(-0.214 -0.214	114 0.411	0.286
CCV													1.000	0.393	0.875	0.857	1.000	0.857	0.929	0.964	0.821	0.911	0.357 0	0.036 0.036	36 0.411	0.357
CMed														1.000	0.054	0.036	0.393	0.036	0.179	0.536	-0.071	0.268	0.321 0.	0.107 0.107	07 0.161	0.179
CS_1^1															1.000	0.982	0.875	0.982	0.982	0.768	0.946	0.964	0.054 -(-0.196 -0.1	-0.196 0.321	0.196
CS_i^2																1.000	0.857	1.000	0.964	0.750	0.964	0.946	0.036 -(-0.214 -0.2	-0.214 0.411	0.286
CS_i^3																	1.000	0.857	0.929	0.964	0.821	0.911	0.357 0	0.036 0.036	36 0.411	0.357
CS_i^4																		1.000	0.964	0.750	0.964	0.946	0.036 -(-0.214 -0.2	-0.214 0.411	0.286
CS_i^5																			1.000	0.857	0.929	0.982	0.143 -(-0.143 -0.143	43 0.411	0.321
CS_i^6																				1.000	629.0	0.875 (0.321 -(0.0- 980.0	-0.036 -0.036 0.482	0.464
CS_i^7																					1.000	0.875	0.214 0.	0.000 0.000	00 0.446	0.321
$NP_{i}^{(1)}$																						1.000 (0.089	-0.196 -0.1	-0.196 0.464	0.375
$NP_{i}^{\;(2)}$																							1.000 0	0.929 0.929	29 0.339	0.321
$NP_{i}^{(3)}$																							1	1.000 1.000	00 0.125	0.071
$NP_{i}^{\;(4)}$																								1.0	1.000 0.125	0.071
Z1																									1.000	-0.214

HD4728 0.9 0.5 PDW344

BLUP's of genotypes (2015-16)

Fig. 1: Biplot analysis of nonparametric measures based on Fig. 2: Biplot analysis of nonparametric measures based on BLUE's of genotypes (2015-16)

Fig. 3: Biplot analysis of nonparametric measures based on BLUP's of genotypes (2017-18)

Fig. 4: Biplot analysis of nonparametric measures based on BLUE's of genotypes (2017-18)

all the measures. Median reflected both types of correlations. S_i¹, S_i², S_i³, S_i⁴, S_i⁵, S_i⁶, S_i⁷ exhibited highly significant to significant positive correlations with exception of CMR & CMed. Negative relationships maintained CMR with most of the measures. CSD had maintained only significant and perfect positive relationships with CS₁, CS₂, CS₄. Only direct relationships showed by CCV. While indirect relations of CMed had observed. CS₁, CS₂, CS₃, CS_i⁴, CS_i⁵, CS_i⁶, CS_i⁷ behaved in similar manner and exhibited only direct relations with other and themselves. Values of NP_i⁽¹⁾, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾ had expressed positive correlations. Z1 is related to Z2 in inverse manner.

S_i^1	-0.1238	0.2345
S_i^2	-0.2163	0.1461
S_i^3	-0.1061	0.2738
S_i^4	-0.2150	0.1450
S_{i}^{2} S_{i}^{3} S_{i}^{4} S_{i}^{5} S_{i}^{6}	-0.1878	0.1624
S_i^6	-0.0509	0.2926
S_i^7	-0.2019	0.0885
CMR	0.0954	-0.0615
CSD	-0.2521	-0.0609
CCV	-0.2411	0.0067
CMed	0.0835	-0.0558
CS _i ¹	-0.2547	-0.0460
CS _i ²	-0.2506	-0.0692
CS _i ³	-0.2549	-0.0250
CS _i ⁴	-0.2521	-0.0609
CS _i ⁵	-0.2456	-0.0935
CS _i ⁶	-0.2396	-0.0263
CS _i ⁷	-0.2471	-0.0119
$NP_i^{(1)}$	-0.2444	-0.0998
$NP_i^{(2)}$	-0.0930	0.2580
$NP_i^{(3)}$	-0.0498	0.2781
$NP_i^{(4)}$	-0.0464	0.2799
Z1	-0.1700	-0.1536
Z2	-0.1827	-0.1560
% variance	49.50	36.38

Table 12: Loadings of rank-based measure (2015-16) **BLUP**

Measure	Component PC1	Component PC2
Yield	0.1316	0.2552
GAI	0.1315	0.2553
MR	-0.0953	-0.2753
SD	-0.2150	0.1450
CV	-0.0285	0.2921
Med	-0.0550	-0.2895

Online ISSN: 2230-732X Print ISSN: 1974-1712 331

Table 13: Spearman's rank correlation coefficient values among nonparametric measures (2015-16) BLUE

	140	9	5	125	ME	-	60	603	4.0	C.	90	. 0	9	5	1100	J. K. 1			İ				İ	(3) div (9) div (3)	GIA (6)	9 617		,
	GAI	MIK	SD	رد	Med	, מי	, i	 	,	 		,	CMK	CSD	- 1	Civied CS _i		2,57		ָיָביּיִ ט	ري [.] ا		ı	N.	NE	Nri	7 7	77
	0.964	3.964 -0.839 -0.661 -0.929 -0.661 -0.500 -0.661 -0.857	-0.661	-0.929	-0.661	-0.500	1-0.661	-0.857	7 -0.661		-0.357 -0.857		-0.714 0.393	0.750	0.750	0.357 (0.750 0	0.750 0	0 629.0	0.750 0	0.679 0.	0.607 0.8	0.857 0.661		36 -0.75	-0.536 -0.750 -0.750 0.250		0.250
GAI		1.000 -0.946 -0.625 -0.964 -0.732 -0.464 -0.625 -0.929 -0.625	-0.625	-0.964	-0.732	-0.464	-0.625	5 -0.925	9 -0.62		-0.321 -0.929	9 -0.607	-0.607 0.214	629.0	0.643 (0.321 (709.0 629.0 629.0	0 629		0.679 0.607		0.464 0.8	0.821 0.554	54 -0.6	-0.679 -0.857	-0.857	0.214 0.	0.214
MR		1.000	0.214	1.000 0.214 0.839 0.893	0.893	0.232	0.214	0.804	0.804 0.214	0.054	0.804	0.339	0.018		-0.554	- 680:0	- 969:0	0.696).625 -()- 969'().625 -0	.375 -0.	839 -0.6	-0.696 -0.554 -0.089 -0.696 -0.696 -0.625 -0.696 -0.625 -0.375 -0.839 -0.679 0.732 -0.696 -0	32 0.804	0.804)- 680:0-	-0.089
SD			1.000	0.661	0.661 0.429	0.911	1.000	0.732	1.000	0.875	0.732	0.875		-0.054 -0.125 -0.125 -0.054	-0.125	0.054	-0.125 -0.125 0.054	0.125 0		0.125 0	.054 0.	054 -0.	232 -0.1	-0.125 0.054 0.054 -0.232 -0.107 0.589	969.0 68	969.0	-0.411 -0	-0.411
CV				1.000	1.000 0.875	0.536	0.661		0.964 0.661	0.393	0.964	0.714		-0.143 -0.536 -0.500 -0.107	-0.500	0.107	0.536	0.536 -).429 -().536 -().429 -0	.321 -0.	3.0- 679	-0.536 -0.536 -0.429 -0.536 -0.429 -0.321 -0.679 -0.518 0.750	50 0.929	0.929	-0.143 -(-0.143
Med	Ŧ				1.000	0.375	0.429	0.804	0.429	0.161	0.804	0.589	0.196	-0.446 -0.268 0.304	-0.268		0.446	0.446 -).304 -().446 -(0.304 -0	.125 -0.	554 -0.4	-0.446 -0.446 -0.304 -0.446 -0.304 -0.125 -0.554 -0.464 0.839	9 0.875	0.875	0.161 0	0.161
\tilde{S}_{i}						1.000	0.911	0.643	0.911	0.929	0.643	0.821	0.143	-0.107	-0.107 -0.036 -0.036 -0.107 -0.107 0.071	0.036	0.107	0.107 0		0.107 0	-0.107 0.071 0.143		214 -0.0	-0.214 -0.089 0.607	209'0 20	0.607	-0.393	-0.393
S_i^2							1.000	0.732	1.000	0.875	0.732	0.875		-0.054 -0.125 -0.125 -0.054	-0.125		-0.125 -0.125 0.054	0.125 0		0.125 0.	-0.125 0.054 0.054		232 -0.1	-0.232 -0.107 0.589	969.0 68	969.0	-0.411 -0	-0.411
\hat{S}_{i}								1.000	1.000 0.732	0.536	1.000	0.679	0.000	-0.393	-0.357	0.143 -	0.393	0.393 -).286 -()- 268:().286 -0	.143 -0.	571 -0.3	-0.393 -0.357 -0.143 -0.393 -0.393 -0.286 -0.393 -0.286 -0.143 -0.571 -0.339 0.821	1 0.964	0.964	-0.214 -0.214).214
$^{\circ}_{i}$									1.000	0.875	0.732	0.875		-0.054 -0.125 -0.125 -0.054	-0.125	0.054	-0.125 -0.125 0.054	0.125 0		0.125 0	.054 0.	054 -0.	232 -0.1	$ -0.125 \ 0.054 \ \ 0.054 \ \ -0.232 \ -0.107 \ 0.589 $	969.0 68	969.0	-0.411 -0.411	.411
S_{i}										1.000	0.536	0.679	0.036	0.000	0.000	-0.107 (0.000 0.000 0.143	0000		0.000 0	0.143 0.	0.179 -0.	-0.071 0.018	18 0.429	9 0.464	0.464	- 09:0-	-0.607
$\tilde{\mathbf{v}}_{i}$											1.000	0.679	0.000	-0.393 -0.357 -0.143	-0.357		0.393	0.393 -).286 -()- 268:().286 -0	.143 -0.	571 -0.3	-0.393 -0.393 -0.286 -0.393 -0.286 -0.143 -0.571 -0.339 0.821	1 0.964	0.964	-0.214 -0.214).214
\tilde{S}_{i}												1.000	-0.143	-0.321	-0.321 -0.286 0.107		-0.321	0.321 -	-0.321 -0.143 -0.321		0.143 -0	.179 -0.	393 -0.3	-0.143 -0.179 -0.393 -0.375 0.536	36 0.643	0.643	-0.143 -(-0.143
CMR	R												1.000	0.536	0.786	0.607	0.536 0	0.536 0	0.643 0	0.536 0	0.643 0.857		0.429 0.554	54 0.536	36 0.214	0.214	0.393 0	0.393
CSD	_													1.000	0.929	0.357	1.000 1	1.000 0	0.964 1	1.000 0	0.964 0.	0.857 0.9	0.964 0.982	82 -0.143	43 -0.28	-0.286 -0.286 (0.393 0	0.393
CCV	>														1.000	0.571 (0.929 0	0.929 0	0.964 0	0.929 0	0.964 0.	0.964 0.8	0.893 0.911	11 0.071	71 -0.179	9 -0.179 0.429		0.429
CMe	ed														•	1.000 (0.357 0	0.357 0	0.500 0	0.357 0	0.500 0.	0.536 0.3	0.393 0.232	32 0.286	86 0.071	0.071	0.500 0	0.500
CS_1^1																	1.000 1	1.000 0	0.964 1	1.000 0	0.964 0.	0.857 0.9	0.964 0.982		43 -0.28	-0.143 -0.286 -0.286 0.393		0.393
CS_i^2																	1	1.000 0	0.964 1	1.000 0	0.964 0.	0.857 0.9	0.964 0.982	82 -0.1	43 -0.28	-0.143 -0.286 -0.286 0.393		0.393
CS_{i}^{3}																		1	1.000 0	0.964 1	1.000 0.	0.929 0.9	0.929 0.946	46 0.036		-0.143 -0.143 (0.357 0	0.357
CS_{i}^{4}	p.as																		1	1.000 0	0.964 0.	0.857 0.9	0.964 0.982	82 -0.143	43 -0.28	-0.286 -0.286 0.393		0.393
CS ₂	,-																			Ţ	1.000 0.	0.929 0.9	0.929 0.946	46 0.036	36 -0.143	-0.143	0.357 0	0.357
CS_i^6																					ij	1.000 0.7	0.786 0.875	75 0.286	98 0.036	0.036	0.286 0	0.286
CS_i^7																						1.0	1.000 0.911	11 -0.321	21 -0.46	-0.464 -0.464 (0.321 0	0.321
$NP_{i}^{(1)}$	(1)																						1.000	00 -0.089	89 -0.232	-0.232	0.304 0	0.304
$NP_{i}^{(2)}$	(2)																							1.000	00 0.929	0.929	0.036 0.	0.036
$NP_{i}^{(3)}$	(3)																								1.000	1.000	-0.071 -(-0.071
$NP_{i}^{(4)}$	(4)																									1.000	-0.071 -0	-0.071
Z1																											1.000 -(-0.661

Print ISSN: 1974-1712 332 Online ISSN: 2230-732X

Graphical analysis based on biplot

Five clusters among 30 rank-based measures had been expressed Biplot analysis and the loadings of measures were shown in table 16. Both significant PAC's accounting for 88.2% of the variance of the original variables (Fig. 3). Grouping of Yield with GAI, MR with Med and CMR with CMed were observed in graphical analysis. CV expressed affinity with NP_i⁽²⁾, NP_i⁽³⁾ & NP_i⁽⁴⁾, SD, S_i³, S_i⁶, S_i¹, S_i², S_i⁴, S_i⁵, S_i⁷ as grouped in cluster. Another large cluster comprised of Z1, Z2, CCV, CSD, Z1, Z2, NP_i⁽¹⁾, CS_i¹, CS_i², CS_i³, CS_i⁴, CS_i⁵, CS_i⁶ and CS_i⁷ measures.

Table 14: Loadings of rank-based measure (2015-16) BLUE

Measure	Component PC1	Component PC2
Yield	-0.2322	-0.0864
GAI	-0.2307	-0.0944
MR	0.2263	0.0825
SD	-0.1891	-0.1642
CV	-0.2231	-0.1055
Med	0.2000	0.1107
S_i^1	-0.1874	-0.1704
	-0.1810	-0.1687
S_i^3	-0.2191	-0.1378
S_{i}^{2} S_{i}^{3} S_{i}^{4} S_{i}^{5} S_{i}^{6} S_{i}^{7}	-0.1891	-0.1642
S_i^{5}	-0.1611	-0.1768
S _i 6	-0.2189	-0.1358
S _i ⁷	-0.2076	-0.1255
CMR	-0.0884	0.2577
CSD	0.1900	-0.2045
CCV	0.1622	-0.2522
CMed	-0.0898	0.1423
CS_i^1	0.1948	-0.1928
CS _i ²	0.1924	-0.2033
CS _i ³	0.1741	-0.2377
CS _i ⁴	0.1900	-0.2045
CS _i ⁵	0.1639	-0.2426
CS _i ⁶	0.1430	-0.2744
CS _i ⁷	0.2131	-0.1479
$NP_{i}^{(1)}$	0.1791	-0.2124
$NP_{i}^{(2)}$	-0.1178	-0.2542
NP _i (3)	-0.1375	-0.2429
NP _i (4)	-0.1432	-0.2323
$Z1^{\frac{1}{1}}$	0.1649	-0.0487
Z2	0.1498	-0.0866
% variance	56.08	28.66

SECOND YEAR OF STUDY 2017-18

Analytic analysis as per BLUE's

Higher average yield had expressed by G3, G6, G7

wheat genotypes, whereas G3, G6, G7 for possessed higher adaptability index values, mean of ranks selected G2, G9, G8 more over the consistent yield of G2, G8, G5 expressed by least values of standard deviation (Table 9). CV identified as G2, G8, G5 genotypes; Median found G9 G8 G2 as suitable genotypes as per considered locations of the zone. S_i¹ & S_i² measures selected G2, G8, G7 opposed to G2, G8, G5 by S_i³ values. Genotypes G2, G8, G7 considered by S_i⁴ as well as by S_i⁵, genotypes G2, G8, G5 favoured by S_i⁶ whereas S_i⁷ settled for G2, G8, G7 genotypes.

CMR selected G7, G6, G5 and CSD observed suitability of G7, G8, G6 genotypes. CCV exhibited genotypes G7, G6, G8 while median values for G9, G7, G6 and genotypes G7, G8, G6 by CS_i¹, CS_i², CS_i³ (CS_i⁴ measures whereas as per least values of CS_i⁵ genotypes were G8, G7, G6 & for CS_i⁶ values G7, G8, G6 while G7, G6, G8 by CS_i⁷ (table 10). NP_i⁽¹⁾favoured (G8, G7, G6); while (G8, G2, G5) by NP_i⁽²⁾, NP_i⁽³⁾ & NP_i⁽⁴⁾. Measure Z1 settled for G5, G2, G6 and while genotypes G5, G2, G1 by Z2 values.

W=0.42 and χ^2 =101.2 statistic was less than table of χ^2 (0.05, 290) = 124.3 (135.8), which resulted an overall similarity among non-parametric measures. Values of Z_1 sum = 8.08 and Z_2 sum = 9.9 (Table 10) were less than the critical value of χ^2 (0.05, 29) = 42.6. This indicated the non-significant differences among genotypes as per ranks of CS₁ and CS₂ measures.

Association analysis

Majority of highly significant negative correlations of yield had evident from table. At the same time yield expressed positive values observed with GAI, CMR, CCV, CMed and CS, (Table 17). GAI showed negative correlations with most of the measures. MR expressed significant positive correlation with CV, Med, S_i, S_i, NP_i, NP_i, NP_i, NP_i, NP_i, SD and CV depicted same type of correlations with measures. Median had maintained highly significant and significant direct relations with the measures. S_i^1 , S_i^2 , S_i^3 , S_i^4 , S_i^5 , S₆, S₇ exhibited significant positive correlation with other measures. CMR measure maintained both type of relationships. CSD, CCV had expressed positive correlations with measures & CMed maintained only negative values of correlation. CS₁, CS₂, CS₃ CS_i⁴, CS_i⁵, CS_i⁶ and CS_i⁷ expressed only significant positive relationships with others and themselves. NP_i⁽¹⁾, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾ had expressed only direct

Print ISSN: 1974-1712 333 Online ISSN: 2230-732X

 Table: 15 Spearman's rank correlation coefficient values among nonparametric measures (2017-18) BLUP

000 -0333 1,0000 -0,233 0,467 0,167 0,117 0,1192 0,1167 0,117 0,1167 0,1107 0,1		GAI MR SD CV Med Si Si Si Si Si Si Si Si Si Si Si Si Si
1000 0492 -0167 -0468 -0468 -0		-0.992 -0.200 -0.650 -0.753 -0.200 -0.200 -0.500 -0.250 -0.600 -0.333 0.467 0.167 0.117 0.192 0.167 0.1167 0.1167 0.1167 0.100 0.333 -0.050 0.250 -0.633 -0.667 -0.667 -0.667
1000 0325 0725 0325 0325 0325 0325 0325 0325 0325 03	GAI	-0.567 -0.283 0.517 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217 0.217
1000 0833 0497 0833 0897 0497 0497 0497 0497 0497 0497 0497 04	MR	0.850 0.325 0.325 0.625 0.325 0.275 0.708 0.492 -0.425 -0.058 0.058 -0.317 -0.058 -0.058 0.058 -0.058
1000 0.580 0.883 0.987 0.983 0.980 0.002 0.283 0.517 0.567 0.428 0.438 0.839 0.839 0.833 0	SD	1.000 0.933 1.000 0.967 0.883 0.967 -0.167 0.833 0.767 -0.308 0.833 0.833 0.833 0.833 0.833 0.617 0.700 0.700 0.817 0.800 0.800
1000 -0.058 -0.058 -0.045 -0.045 -0.1	CV	0.967 0.833 0.783 0.983 0.900 -0.283 0.517 0.567 -0.292 0.517 0.517 0.600 0.517 0.517 0.300 0.583 0.367 0.950 0.983 0.983
1.000 0.903 1.000 0.905 0.883 0.867 0.406 0.833 0.833 0.833 0.833 0.833 0.837 0.830 0.617 0.700 0.700 0.817 0.800 0.800 0.805 0.401 0.803 0.803 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.830	Med	-0.058 -0.042 0.425 0.108 -0.358 -0.458 -0.192 -0.150 -0.458 -0.458 -0.292 -0.458 -0.408 -0.408 -0.108 -0.492 0.425 0.508 0.508
0.993 1,000 0,967 0,883 0,967 -0,167 0,883 0,833 0,833 0,833 0,833 0,833 0,830 0,807 0,700 0,807 0,809	S_i^1	$1.000\ \ 0.967\ \ 0.883\ \ 0.967\ \ -0.167\ \ 0.833\ \ \ 0.833\ \ \ 0.833\ \ \ 0.833\ \ \ 0.833\ \ \ 0.833\ \ \ 0.833\ \ \ 0.817\ \ \ \ 0.800\ \ \ \ 0.800$
1,000 0,993 0,900 0,983 0,967 -0,217 0,633 0,633 0,700 0,633 0,650 0,650 0,650 0,630 0,997 0,933 0,533 1,000 0,987 0,883 0,967 -0,167 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,837 0,800 0,800 0,800 0,800 0,800 0,917 -0,223 0,817 0,725 0,817 0,725 0,817 0,725 0,817 0,800 0,817 0,800 0,817 0,923 0,817 0,725 0,817 0,725 0,817 0,800 0,817 0,800 0,817 0,800 0,817 0,925 0,917 0,9	S_{i}^{2}	$1.000\ 0.967\ 0.883\ 0.967\ -0.167\ 0.833\ 0.767\ -0.308\ 0.833\ 0.833\ 0.833\ 0.833\ 0.833\ 0.837\ 0.800\ 0.700\ 0.700\ 0.817\ 0.800\ 0.800$
1.000 0.967 0.883 0.967 -0.167 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.837 0.700 0.700 0.700 0.800	S _i	0.933 0.900 0.983 0.967 -0.217 0.633 0.667 -0.292 0.633 0.633 0.700 0.633 0.650 0.450 0.633 0.500 0.917 0.933 0.
1000 0850 0917 -0.23 0817 0.700 -0.255 0.550 0.550 0.567 0.350 0.570 0.933 0.930 0.990 0.433 1.000 -0.132 0.258 0.6350 0.550 0	$_{_{4}}^{S}$	$0.883 \ \ 0.967 \ \ -0.167 \ \ 0.833 \ \ \ 0.833 \ \ \ 0.833 \ \ \ 0.833 \ \ \ 0.833 \ \ \ \ 0.817 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1,000 0,917 -0.267 0,583 0,733 0,707 0,550 0,567 0,333 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707 0,500 0,707	S_{i}	$0.850 \ \ 0.917 \ \ -0.233 \ \ 0.817 \ \ \ 0.275 \ \ \ 0.817 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1000 -0.13 0.73 0.767 0.28 0.73 0.707 0.50 0.73 0.717 0.50 0.708 0.707 0.707 0.217 0.107 0.100 0.217 0.107 0.100 0.217 0.107 0.100 0.201 0.201 0	$\overset{\circ}{s_i}$	$0.917 \;\; -0.267 \;\; 0.550 \;\; 0.583 \;\; -0.325 \;\; 0.550 \;\; 0.550 \;\; 0.617 \;\; 0.550 \;\; 0.567 \;\; 0.333 \;\; 0.550 \;\; 0.400 \;\; 0.933 \;\; 0.950 \;\;$
1,000 0,217 0,417 0,708 0,217 0,105 0,883 1,083 0,133 0,267 0,583 0,533 0,533 0,547 0,417 0,407 1,000 0,717 0,109 0,292 0,717 0,109 0,950 0,717 0,500 0,867	S_i^7	$-0.133\ 0.733\ 0.767\ -0.258\ 0.733\ 0.733\ 0.800\ 0.733\ 0.717\ 0.550\ 0.750\ 0.583\ 0.850\ 0.867\ 0.867$
1.000 0.217 0.192 1.000 1.083 1.000 0.867 0.867 0.560 0.917 0.583 0.533 0.533 0.530 0.517 1.000 0.202 0.717 0.102 0.102 0.102 0.107 0.102 0.102 0.105 0.107 0.102 0.105 0.107 0.102 0.105 0.107 0.102 0.105 0.107 0.102 0.105 0.107 0.102 0.105 0.107 0.102 0.105 0.107 0.102 0.105 0.107 0.102	CMR	$-0.217\ 0.417\ 0.708\ -0.217\ -0.217\ 0.150\ -0.217\ -0.333\ 0.383\ 0.133\ -0.267\ -0.533\ -0.417\ -0.417$
1,000 0,292 0,717 0,717 0,933 0,717 0,600 0,867 0,867 0,567 0,417 0,433 0,437 0,700 1,000 1,000 0,930 0,717 0,720 0,917 0,720 0,917 0,732 0,432 0,432 0,432 0,437 0,700 0,917 0,700 0,917 0,720 0,917	CSD	$0.717 \ \ -0.192 \ \ 1.000 \ \ 1.000 \ \ 0.883 \ \ 1.000 \ \ 0.950 \ \ 0.717 \ \ 0.750 \ \ 0.917 \ \ 0.583 \ \ 0.533 \ \ 0.533$
1.000 -0.192 -0.175 -0.192 -0.275 0.275 0.292 -0.258 -0.592 -0.392 -0.392 -0.308	CCV	0.292 0.717 0.717 0.933 0.717 0.600 0.867 0.867 0.550 0.417 0.483 0.483
1.000 1.000 0.883 1.000 0.950 0.717 0.750 0.917 0.583 0.533 0.417 1.000 0.881 0.000 0.883 0.700 0.917 0.750 0.917 0.583 0.533 0.417 1.000 0.883 0.750 0.883 0.750 0.917 0.750 0.917 0.550 0.520 0.523 0.417 1.000 0.950 0.717 0.750 0.917 0.750 0.917 0.550 0.533 0.417 1.000 0.950 0.717 0.750 0.917 0.750	CMed	-0.192 -0.192 0.175 -0.192 -0.375 0.275 0.292 -0.258 -0.525 -0.392 -0.392
1.000 0.883 1.000 0.987 0.717 0.750 0.917 0.583 0.437 0.437 0.430 0.437	CS_i^1	$1.000 \ 0.883 \ 1.000 \ 0.950 \ 0.717 \ 0.750 \ 0.917 \ 0.583 \ 0.533 \ 0.533$
1.000 0.883 0.750 0.917 0.750 0.517 0.560 0.533 0.533 0.541 1.000 0.950 0.717 0.750 0.917 0.750 0.917 0.583 0.550 0.433 1.000 0.700 0.583 0.967 0.633 0.550 0.550 0.433 1.000 0.683 0.733 0.733 0.233 0.250 0.567 1.000 0.683 0.733 0.733 0.750 0.647 1.000 0.567 0.483 0.550 0.550 0.653 1.000 0.500 0.417 0.417 0.433 1.000 0.500 0.417 0.417 0.433 1.000 0.500 0.417 0.417 0.433 1.000 0.500 0.417 0.433 0.400 1.000 0.500 0.417 0.417 0.430 1.000 0.500 0.417 0.420 0.450 1.000 0.500 0.417 0.420 0.450 1.000 0.500 0.41	CS_i^2	0.883 1.000 0.950 0.717 0.750 0.917 0.583 0.533 0.533
1.000 0.950 0.717 0.750 0.917 0.583 0.533 0.533 0.433 0.417 0.700 0.500 0.700 0.500 0.500 0.500 0.500 0.433	CS_1^3	$0.883 \ \ 0.750 \ \ 0.800 \ \ 0.917 \ \ 0.700 \ \ 0.517 \ \ 0.550 \ \ 0.550$
1.000 0.583 0.567 0.633 0.550 0.550 0.483 1.000 0.683 0.733 0.230 0.250 0.667 1.000 0.567 0.483 0.550 0.500 0.417 0.413 1.000 0.567 0.483 0.500 0.417 0.413 0.403 1.000 0.567 0.483 0.583 0.983 0.983 0.400 1.000 0.983 0.983 0.983 0.983 0.450 1.000 0.983 0.983 0.450 1.000 0.450	$CS_{\underline{i}}^{4}$	0.950 0.717 0.750 0.917 0.583 0.533 0.533
1.000 0.683 0.233 0.250 0.650 0.650 0.650 0.650 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.6417 0.413 0.633 0.640 0.6417 0.413 0.640 0.640 0.650 0.640 0.650 0.650 0.650 0.650 0.650 0.650 0.640 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.640 0.650 <	CS_{i}^{5}	0.700 0.583 0.967 0.633 0.550 0.550
1.000 0.567 0.483 0.550 0.653 0.633	CS_i^6	0.683 0.733 0.233 0.250 0.250
1.000 0.500 0.417 0.417 0.433 1.000 0.983 0.983 0.400 1.000 1.000 0.450 1.000 0.450	CS_i^7	0.567 0.483 0.550 0.550
1.000 0.983 0.983 0.400 1.000 1.000 0.450 1.000 0.450	$NP_{i}^{(l)}$	0.500 0.417 0.417
1,000 1,000 0.450 1,000 0.450 1,000 0.450	$NP_{i}^{\ (2)}$	0.983 0.983
$1.000 \ 0.450$ $1.000 \ 1.000$	$NP_{i}^{\ (3)}$	1.000
	$NP_{i}^{(4)}$	
	Z1	1.000 -0.590

Print ISSN: 1974-1712 334 Online ISSN: 2230-732X

relationships. More over Z1 was related Z2 values by an inverse relationship.

Table 16: Loadings of rank-based measure (2017-18) BLUP

Measure	Component PC1	Component PC2
Yield	0.0266	0.3596
GAI	0.0179	0.3601
MR	-0.0285	-0.3472
SD	0.2233	0.0219
CV	0.1705	0.2377
Med	-0.0282	-0.3441
S_i^1	0.2237	0.0035
S_{i}^{1} S_{i}^{2} S_{i}^{3} S_{i}^{4} S_{i}^{5} S_{i}^{6} S_{i}^{7}	0.2259	0.0100
S_i^3	0.2036	0.1525
S _i ⁴	0.2233	0.0219
S _i 5	0.2221	0.0109
S _i 6	0.1802	0.2147
S _i ⁷	0.2194	0.0379
CMR	0.0327	0.1105
CSD	0.2171	-0.1007
CCV	0.1958	-0.1435
CMed	0.0366	0.1042
CS_i^1	0.2170	-0.0945
CS _i ²	0.2160	-0.1098
CS _i ³	0.2108	-0.1317
CS _i ⁴	0.2171	-0.1007
CS _i ¹ CS _i ² CS _i ³ CS _i ⁴ CS _i ⁵ CS _i ⁶	0.2115	-0.0916
CS _i ⁶	0.2068	-0.1391
CS _i ⁷ NP _i (1)	0.2002	-0.1009
NP _i (1)	0.2068	-0.1078
$NP_i^{(2)}$	0.1794	0.2126
$NP_i^{(3)}$	0.1682	0.2408
NP _i (4)	0.1674	0.2431
Z1 .	0.1804	-0.1675
Z2	0.1773	-0.1776
% variance	63.64	24.60

Table 18: Loadings of rank-based measure (2017-18) BLUE

Measure	Component PC1	Component PC2
Yield	-0.0767	-0.3088
GAI	-0.0763	-0.3077
MR	0.0621	0.3231
SD	-0.2290	-0.0348
CV	-0.1739	-0.2297
Med	0.0749	0.2930
S_i^1	-0.2287	-0.0239
S_i^2	-0.2305	-0.0318
S_i^3	-0.2084	-0.1527
S _i ⁴	-0.2290	-0.0348
S_{i}^{2} S_{i}^{3} S_{i}^{4} S_{i}^{5}	-0.2304	-0.0176
S_i^6	-0.1874	-0.2038
S_i^7	-0.2163	-0.0575

Graphical analysis based on biplot

Values of the loadings for measures as per first two significant principal components axes (PCA) were shown in table 18. Both significant PAC's accounting for 78.4% of the variations in the variables (Fig. 4). Smaller clusters of only two measures i.e. Yield with GAI and MR with Med are observed in graphical analysis. CV along with CMR expressed affinity with, SD, CMed, NP_i⁽²⁾, NP_i⁽³⁾, NP_i⁽⁴⁾, S_i³, S_i⁵, S_i⁶. Large cluster comprises of CCV, CSD, NP_i⁽¹⁾, S_i¹, S_i², S_i⁴, CS_i¹, CS_i², CS_i³, CS_i⁴, CS_i⁵, CS_i⁶, CS_i⁷ and Z1measures.

CONCLUSION

BLUP's of wheat genotypes provide more valid estimates of yield in multi environment trials and more variations accounted by first two significant principal components of nonparametric measures. More affinity among measures had reflected by a smaller number of clusters in biplot analysis based on BLUP's. Association of S_i, CS_i, NP_i with other measures is independent of ranks as per BLUP or BLUE of genotypes. Positive and direct relationships exhibited by these measures with other nonparametric measures.

ACKNOWLEDGEMENTS

Authors sincerely acknowledge the training by Dr. J. Crossa and financial support by Dr. A.K. Joshi & Dr. R.P. Singh CIMMYT, Mexico along with hard work of the staff at coordinating centers of AICW & BIP project to carry out the field evaluation and data recording.

Print ISSN: 1974-1712 335 Online ISSN: 2230-732X

Table 17: Spearman's rank correlation coefficient values among nonparametric measures (2017-18) BLUE

	0.967 -0.900 -0.533 -0.917 -0.775 -0.567 -0.533 -0.817 -0.533 -0.567 -0.883 -0.517 0.375 -0.083 0.133 0.375 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 0.183 -0.083 0.15	.083 0.133 -0.292 -0.933 -0.967 -0.967 -0.250 -0.300
GAI	GAI 1.000 -0.917 -0.517 -0.883 -0.725 -0.567 -0.517 -0.800 -0.517 -0.567 -0.483 0.442 -0.017 0.233 0.442 -0.017 -0	.017 0.233 -0.242 -0.900 -0.917 -0.917 -0.250 -0.283
MR	MR 1.000 0.283 0.817 0.892 0.333 0.283 0.667 0.283 0.333 0.767 0.267 -0.558 -0.283 -0.467 -0.442 -0.283 -0.	.283 -0.467 -0.242 0.783 0.833 0.833 0.117 0.183
SD	1.000 0.733 0.375 0.983 1.000 0.983 0.983 0.783 0.983 0.008 0.767 0.633 -0.242 0.767 0.7	767 0.633 0.758 0.700 0.650 0.650 0.617 0.583
CV	1.000 0.825 0.750 0.733 0.950 0.733 0.750 0.983 0.700 -0.275 0.283 0.117 -0.375 0.283 0.	283 0.117 0.308 0.950 0.967 0.967 0.517 0.550
Med	1.000 0.425 0.375 0.708 0.375 0.425 0.792 0.375 -0.200 -0.025 -0.175 -0.133 -0.025 -0.025 -0.025 -0.025 0.042 -0.025	.025 -0.175 0.000 0.842 0.875 0.875 0.092 0.158
S_{i}	S_1^1 S_1^1 S_1^2 S_1^2 S_2^2 S_1^2 S_2^2 717 0.567 0.725 0.733 0.667 0.667 0.533 0.483	
S_i^2	1.000 0.850 1.000 0.983 0.783 0.983 0.008 0.767 0.633 -0.242 0.767 0.7	767 0.633 0.758 0.700 0.650 0.650 0.617 0.583
S ₁	S_1^3 1.000 0.850 0.867 0.983 0.800 -0.108 0.500 0.317 -0.308 0.500 0.500 0.500 0.500 0.533 0.500 0.31	500 0.317 0.508 0.950 0.917 0.917 0.533 0.550
S_{i}	1.000 0.983 0.783 0.983 0.008 0.767 0.633 -0.242 0.767 0.767 0.767 0.767 0.783 0.767 0.7	767 0.633 0.758 0.700 0.650 0.650 0.617 0.583
S_{i}	$1.000 \ 0.817 \ 0.950 \ 0.075 \ 0.717 \ 0.567 \ -0.142 \ 0.717 \ 0.717 \ 0.717 \ 0.717 \ 0.717 \ 0.717$	717 0.567 0.725 0.733 0.667 0.667 0.533 0.483
$\overset{\circ}{s_i}$	1,000 0.733 -0.158 0.367 0.183 -0.292 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367	367 0.183 0.392 0.967 0.950 0.950 0.483 0.500
S_{i}^{7}	1.000 -0.075 0.733 0.617 -0.275 0.733 0.733 0.733 0.733 0.733 0.750 0.733	733 0.617 0.708 0.650 0.617 0.617 0.567 0.550
CMR	1.000 0.442 0.542 0.817 0.442 0.442 0.442 0.442 0.442 0.442 0.442 0.392 0.442	442 0.542 0.333 -0.158 -0.275 -0.275 -0.142 -0.242
CSD	1.000 0.950 -0.025 1.000 1.000 1.000 1.000 0.983 1.000	000 0.950 0.958 0.350 0.267 0.267 0.533 0.483
CCV	1.000 0.142 0.950 0.950 0.950 0.950 0.917 0.950	950 1.000 0.842 0.133 0.067 0.067 0.517 0.467
CMed	CMed 1.000 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 0.142	.025 0.142 -0.200 -0.342 -0.425 -0.425 -0.492 -0.575
CS_i^1	1.000 1.000 1.000 1.000 0.983 1.000	000 0.950 0.958 0.350 0.267 0.267 0.533 0.483
CS_i^2	1.000 1.000 1.000 0.983 1.000	000 0.950 0.958 0.350 0.267 0.267 0.533 0.483
CS_i^3	1.000 1.000 0.983 1.000	000 0.950 0.958 0.350 0.267 0.267 0.533 0.483
CS_i^4	1.000 0.983 1.000	000 0.950 0.958 0.350 0.267 0.267 0.533 0.483
CS_i^5	1.000 0.983	983 0.917 0.975 0.417 0.350 0.350 0.550 0.500
CS_i^6	1.000	000 0.950 0.958 0.350 0.267 0.267 0.533 0.483
CS_i^7		1.000 0.842 0.133 0.067 0.067 0.517 0.467
$NP_{i}^{\left(J\right) }$	$\mathrm{NP}_{\mathrm{i}}^{(0)}$	1.000 0.408 0.325 0.325 0.492 0.425
$NP_{i}^{(2)}$	NP _i ⁽²⁾	1.000 0.983 0.983 0.367 0.400
$NP_{i}^{\ (3)}$	NP _i ⁽³⁾	1.000 1.000 0.400 0.450
$NP_{i}^{(4)}$	$\mathrm{NP}_{\mathrm{i}}^{\;(4)}$	1.000 0.400 0.450
Z1	Z1	1.000 -0.625

Print ISSN: 1974-1712 336 Online ISSN: 2230-732X

REFERENCES

- Ahmadi, J., Vaezi, B., Shaabani, A., Khademi, K.,Ourang,
 S. and Pour-Aboughadareh, A. 2015. Non-parametric
 Measures for Yield Stability in Grass Pea (*Lathyrus sativus*L.) Advanced Lines in Semi Warm Regions. *Journal of Agricultural Science and Technology*, 17: 1825-1838.
- Balalić, I., Zorić, M., Miklič, V., Dušanić, N., Terzić, S. and Radić, V. 2011. Nonparametric stability analysis of sunflower oil yield trials. *Helia*, 34: 67-77.
- Delić, N., Stanković, G. and Konstatinov, K. 2009. Use of nonparametric statistics in estimation of genotypes stability. *Maydica*, **54**: 155-160.
- Farshadfar, E., Mahmudi, N. and Sheibanirad, A. 2014. Nonparametric methods for interpreting genotype × environment interaction in bread wheat genotypes. *Journal of Biodiversity & Environmental Sciences*, 4: 55-62.
- Huehn, M. 1990a. Non-parametric measures of phenotypic stability. Part 1: Theory. *Euphytica*, 47: 189-194.
- Huehn, M. 1990b. Non-parametric measures of phenotypic stability: Part 2. Application. *Euphytica*, **47**: 195-201
- Hühn, M. and Leon, J. 1995. Nonparametric analysis of cultivar performance trials: experimental results and comparison of different procedures based on ranks. *Agronomy Journal*, **87**: 627-632.
- Karimizadeh, R., Mohammadi, M., Sabaghnia, N. and Shefazadeh, M.K. 2012. Using Huehn's nonparametric stability statistics to Investigate Genotype × Environment interaction. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, **40**: 293-301
- Khalili, M. and Pour-Aboughadareh, A. 2016. Parametric and nonparametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. *Journal of Agricultural Science and Technology*, 18: 789–803.
- Mahtabi, E., Farshadfar, E. and Jowkar, M.M. 2013. Non parametric estimation of phenotypic stability in chickpea (*Cicer arietinum* L.). *International Journal of Agriculture and Crop Science*, **5**: 888-895.
- Mohammadi, R., Farshadfarar, E. and Amri, A. 2016. Comparison of rank-based stability statistics for grain yield in rainfed durum wheat. *New Zealand Journal of Crop & Horticulture Science*, **44**: 25–40.

- Mortazavian, S.M.M. and Azizinia, S. 2014. Nonparametric stability analysis in multi-environment trial of canola. *Turkish Journal Field Crops*, **19**(1): 108-117.
- Nassar, R. and Huehn, M. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. *Biometric*, **43**: 45-53.
- Piepho, H.P. and Lotito, S. 1992. Rank correlation among parametric and nonparametric measures of phenotypic stability. *Euphytica*, **64**: 221–225.
- Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P. and Siddique, K.H.M. 2019. STABILITYSOFT: A new online program to calculate parametric and nonparametric stability statistics for crop traits. *Applications* in *Plant Sciences*, 7(1): e1211.
- Rasoli, V., Farshadfar, E. and Ahmadi, J. 2015. Evaluation of Genotype × Environment Interaction of grapevine genotypes (*Vitis vinifera* L.) by nonparametric method. *Journal of Agricultural Science and Technology*, **17**: 1279-1289.
- Sabaghnia, N., Karimizadeh, R. and Mohammadi, M. 2012. The use of corrected and uncorrected nonparametric stability measurements in Durum wheat multi-environmental Trials. *Spanish Journal of Agricultural Research*, **10**: 722-730
- Thennarasu, K. 1995. On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Unpublished Ph.D Thesis PG School IARI, New Delhi.
- Vaezi, B., Pour-Aboughadareh, A., Mehraban, A., Hossein-Pour, T., Mohammadi, R., Armion, M. and Dorri, M. 2018. The use of parametric and non-parametric measures for selecting stable and adapted barley lines. *Archives of Agronomy and Soil Science*, 64: 597–611.
- Zali, H., Farshadfar, E. and Sabaghpour, S.H. 2011. Non-parametric analysis of phenotypic Stability in chickpea (*Cicer arietinum* L.) genotypes in Iran. *Crop Breeding Journal*, **1**(1): 89-100.

Print ISSN: 1974-1712 337 Online ISSN: 2230-732X