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Abstract

The potential presence of long memory (LM) properties in return and volatility of the spot price of lentil in Indore
market has been investigated. Geweke and Porter-Hudak (1983) (GPH) method has been applied to test for presence of
long range dependence in the volatility processes for the series. Stationarity of the series has been tested using Augmented
Dickey-Fuller (ADF) unit root test and Philips-Peron (PP) unit root test. It is observed that both the log returns as well
as squared log returns series are stationary at level but there is a significant presence of long memory in squared log
return series. Accordingly, AR-FIGARCH model was applied for forecasting the volatility of lentil price. To this end,
window based evaluation of forecasting is carried out with the help of Mean squares prediction error (MSPE), Root
MSPE (RMSPE), Mean absolute prediction error (MAPE) and Relative MAPE (RMAPE). The residuals of the fitted models
were used for diagnostic checking. Out-of sample forecast of volatility has been computed for 1st June-31st July, 2015
along with the percentage deviation from the actual price. The maximum deviation has been found to be 2.55%. The R

software package has been used for data analysis.
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There has been a large amount of research on long
memory in economic and financial time series. The
presence of long memory in asset returns has important
implications for many of the models used in modern
financial economics. Long run persistence or long
memory in stock return volatility has important
implications for predicting future volatility. For
modelling the time series in presence of long memory,
the autoregressive fractionally integrated moving-
average (ARFIMA) model is used.

ARFIMA model uses a fractional parameter, d, to
difference the data to capture long memory. Regarding
long memory, very good descriptions can be found in
Robinson (1995) and Baillie et al. (1996), who considered
the developments in the econometric modelling of long
memory, and Beran (1995) reviews long-memory
modelling in other areas. The existence of non-zero dis
an indication of long memory and its departure from
zero measures the strength of long memory. Paul (2014)
and Paul ef al (2015a,b) have applied ARFIMA model
for forecasting of agricultural commodity prices.

However, ARFIMA model is unable to capture the
volatility if present in the dataset. Many financial time
series shows periods of stability followed by unstable
periods with high volatility. To take care of the volatility,
Engle (1982) proposed autoregressive conditional
heteroscedastic (ARCH) model. But, ARCH model has
the property that the unconditional autocorrelation
function of squared residuals; if it exists; decay very
rapidly compared to what is typically observed unless
maximum lag is large. To overcome the weaknesses of
ARCH model, Bollerslev (1986) and Taylor (1986)
proposed the Generalized ARCH (GARCH) model
independently of each other. Huge amount of empirical
and theoretical research work has been already done for
GARCH and related models.

Fung et al (1994) described that a long memory
process could allow conditional heteroscedasticity,
which could be the explanation of non-periodic cycles.
It seems a long memory model is more flexible than an
ARCH model in terms of capturing irregular behaviour.
In the regard, Baillie ef al (1996) developed Fractionally
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Integrated GARCH (FIGARCH) model. FIGARCH model
is capable of explaining and representing the observed
temporal dependencies of the financial market volatility
in a much better way than other types of GARCH models.
Jin and Frechette (2004) applied FIGARCH model for
describing fourteen agricultural future price series.
Bordignon ef al. (2004) have introduced a FIGARCH
model with seasonality, which allows for both periodic
patterns and long memory behaviour in the conditional
variance. It can also merge these two aspects allowing
the model to be both periodic and having long memory
components. Paul et al. (2015c) applied ARFIMA-
FIGARCH model for modelling and forecasting of
volatility with long memory in agricultural commodities
prices in India. For estimation of parameters of
FIGARCH model, the value of fractional differencing
parameter d is estimated first and then this is used to
obtain the estimation of other parameters (Lopes and
Mendes, 2006; H ardle and Mungo, 2008). In the present
investigation, an attempt has been made to apply
FIGARCH model for modelling and forecasting of long
memory time series of volatile log return price of lentil in
Indore Market.

Lentil is one of the most important rabi crops in the
country. India is the second largest producer of the lentil
in the world after Canada. Indian production of this
crop is around 10 lakh metric tons per year which is
cultivated on about 14 lakh hectares of land. The crop is
grown in the winter season in the states of Uttar Pradesh,
Madhya Pradesh, Bihar, West Bengal, Rajasthan,
Haryana, Punjab, Assam and Maharashtra. Around
90% of the production comes from the top four states of
the country. The sentiments of traders play a significant
role in governing the price of this crop. Prices are also
influenced by imports and exports in other countries as
well as substitution with other pluses such as chana,
tur, yellow peas etc. India exports around one lakh tons
of lentil every year. The country also imports nearly 50
thousand tons every year. The main destinations of
exports are Sri Lanka, Egypt, UAE, Sudan, Yemen and
Bangladesh. Imports are mainly from Canada, USA,
Turkey and Australia.

In the present investigation, the volatility in the log
returns series of spot price of lentil in Indore market is
modeled using FIGARCH model. The paper is organized
as follows: section 2 deals with the concept of long
memory process along with testing the presence of long
memory. Section 3 deals with testing presence of ARCH
effect; section 4 describes FIGARCH model, its estimation
and forecasting; results and discussion is given in
section 5 followed by conclusion in section 6.
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Long Memory Process

Long memory in time-series can be defined as
autocorrelation at long lags Robinson (2003). According
to Jin and Frechette (2004), memory means that
observations are not independent (each observation is
affected by the events that preceded it). The acf of a time-
series y,is defined as,

O, = COV YY) vary,

for integer lag k. A covariance stationary time-series
process is expected to have autocorrelations such that,

lim,__ p, = 0.Most of the well-known class of stationary

and invertible time-series processes have
autocorrelations that decay at the relatively fast

exponential rate, so that o, ={m |, where Iml<1 and

this property is true, for example, for the well-known
stationary and invertible ARMA(p,q) process. For long
memory processes, the autocorrelations decay at an

hyperbolic rate which is consistent with o, = Ck**™, as

kincreases without limit, where C is a constant and dis
the long memory parameter.

Long memory tests

Long memory is an important empirical feature of
any financial variables. The presence of long memory in
the data implies the existence of nonlinear forms of
dependence between the first and the second moments,
and thus the potential of time-series predictability.
Testing for long memory property is an essential task
since any evidence of long memory would support the
use of Long Memory (LM)-based volatility models such
as FIGARCH.

Long memory components in the returns series and
squared returns series have been tested using the
Geweke and Porter-Hudak (1983) (GPH) statistic. The
test has been extensively used in the literature. For long
memory in the volatility process, this test is applied to
the logarithm of squared returns series of lentil, which
is commonly regarded as a proxy of conditional volatility
(Lobato and Savin, 1998; Choi and Hammoudeh, 2009).

Testing for ARCH effects

Let £, be the residual series. The squared series{€}

is then used to check for conditional heteroscedasticity,
which is also known as the ARCH effects. The test for
conditional heteroscedasticity is the Lagrange Multiplier
(LM) test due to Engle (1982), which is equivalent to
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usual Fstatistic for testingH,: @ =0,7=1,2,... ,gin

the linear regression,
=a,+a, e, +..+a,¢, +€,t=qg+l,..., T

where g, denotes error term, gis pre-specified positive

:
- _\2
integer and 7'is sample size. Let SSR, = > (Ef - W) ,

t=g+1

where W= Z e /7 is sample mean of(a‘f) and
t=g+1

SR - )¢

t , where €, is least squares residual of
t=q+1
above regression model. Then, under /;:

(SR, - SR, )/q

F =
SR,(T-q-1)

is asymptotically distributed as chi-squared distribution
with gdegrees of freedom. The decision rule is to reject

Hif F> X:(G), where X;(G) is the upper 100(1-0)*

percentile of Xs or, alternatively, the p-value of Fis less

than Q.

FIGARCH Process

Bollerslev (1986) and Taylor (1986) proposed the
Generalized ARCH (GARCH) model independently of
each other, in which conditional variance is also a linear
function of its own lags and has the following form,

— EthtZUZ
a , P
hy =ag +i§1ai € t jZ=:1bj ht_j

=3, +a(L)e +b(L)h

where &, ~ IID(0,1). A sufficient condition for the
conditional variance to be positive is,

The GARCH (p, g) process is weakly stationary if

q P
and only if _Zlai + Zlbj <1
i= j=
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The GARCH(p, g) process may also be expressed as

an ARMA (i, p) process in 8t2 ,

[1-a(L)-blL )k =2 +[1-b(L)M

—h[. The {v}

process can be interpreted as the “innovations” for the
conditional variance, as it is a zero-mean martingale.
Therefore, an integrated GARCH (p, g) process can be
written as,

[1-a(L)-b(L)J1- L) =2, + [1-b(L)},

The fractionally integrated GARCH or FIGARCH
class of models is obtained by replacing the first difference
operator (1 — L) in above equation with the fractional
differencing operator (1 — L), where dis a fraction 0 <d
<1. Thus, the FIGARCH class of models can be obtained
by considering

Where, m = max/p, g/ and Vi ZEtZ

[1-a(L)-b(L)J1- L) e’ =ag + [L-b(L )

Such an approach can develop a more flexible class
of processes for the conditional variance that are capable
of explaining and representing the observed temporal
dependencies of the financial market volatility in a much
better way than other types of GARCH models
(Davidson, 2004).

It may be noted that the fractional differencing
operator (1-L)? can be written in terms of hypergeometric
function,

(1-L)" = F(-d,1LL =§F( )T (k+2) " p(-d)* L

The ARFIMA(p, d, g) class of models for the discrete
time real-valued process {y,} introduced by Granger and
Joyeux (1980); Granger (1980, 1981) and Hosking (1981)
is defined by,

a(l-)(l_ L)d Yi Zb(L)E.»t

where a(L) and H(L) are polynomials in the lag operator

of orders p and g respectively, and &; is a mean-zero

serially uncorrelated process. For the ARFIMA models,
the fractional parameter d lies between -1,2 and 1/2,
(Hosking, 1981). The ARFIMA model is nothing but the
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fractionally integrated ARMA for the mean process.
Analogous to the ARFIMA(p, d, g) process defined above

for the mean, the FIGARCH(p, d, g) process for 8t2 canbe

defined as,

aL)(L-L)"ef =5 + [L-b(L) Iy

where 0 <d <1, and all the roots of a(Z) and [1 —H(L)] lie
outside the unit circle. In the case of ARFIMA model, the
long memory operator is applied to unconditional mean
uof y,which is constant. But this is not true in the case of
FIGARCH model, where it is not applied to «,, but on
squared errors.

Estimation of FIGARCH Model

The estimation of parameters of FIGARCH model is
generally carried out using the maximum likelihood
method with normality assumption. But the normality
assumption can be questioned with some empirical
evidence and therefore the use of quasi-maximum
likelihood estimator is preferred.

The FIGARCH model is estimated by using the
quasi-maximum likelihood (QML) estimation method
allowing for asymptotic normality distribution, based
on the following log-likelihood function,

T

Ly (e,.0) :—%|Og(2ﬂ)—%2{log(h)+%}

where G'E(ao,d,b ,bz,...,bp,al,az,...,aq),

The likelihood function is maximized conditional
on the start-up values. For the FIGARCH(p, d, g) model
with d >0, the population variance does not exist. In
most practical applications with high frequency financial

data, the standardized innovations Et = h{ﬂzst are

leptokurtic and not normally distributed through time.
In these situations the robust quasi-MLE (QMLE)
procedures discussed by Weiss (1986) and Bollerslev
and Wooldridge (1986) may give better results while
doing inference. Baillie ef al. (1996) have claimed the
asymptotic normality of the quasi-maximum likelihood

estimator, éT when( €1,€0,.00,E7 ) form a sample from

FIGARCH(1, d,0) by extending a similar result available
for IGARCH(1,1), using a dominance-type argument.
They have used an upper bound for the infinite sequence
of coefficients of the ARCH( ) representation of an
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IGARCH model. A similar argument was also used in
claiming the asymptotic properties of the quasi-
maximum likelihood estimator for the FIGARCH. When
estimating the parameters of a FIGARCH model,
generally, the value of parameter dis estimated first and
one uses these estimates to obtain the estimation of other
parameters (Lopes and Mendes, 2006; H ardle and
Mungo, 2008).

Forecasting by FIGARCH Model

Forecasting using a FIGARCH model has been
discussed in (Tayafi and Ramanathan, 2012). The one-
step ahead forecast of 4, is given by,

h(@)=a,[l-b, " +A €2 +1, 82, +...

where, 4, ~ l(l— bl)r(d )71Jkd_l

Similarly, the two-step ahead forecast is given by,
-1 2 2

Here 8t2+1 is unobservable and to be estimated by its
conditional expectation h (1) , which is a function of
past £t2.

Therefore,

h(2)=a1-b, [+ Ah @)+ 2, €7 +...
In general, the ~step ahead forecast is,
h(l)=a[1-b] + AR (1 -2)+..+

Zu (1)+ 4 gtz + /1|+15t271 +...

For all practical purpose, we stop at a large M and
this leads to the forecasting equation,

R()~afi-b,]"+ ZAR0-0)+ 24, 7,

j=0

The parameters will have to be replaced by their
corresponding estimates.

Results and Discussion

Daily time series data for spot prices of lentil in Indore
Market during 1 January, 2007 to 31 July, 2015 has been
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considered. The return series are computed as differences
in natural log prices. The data is collected form Ministry
of Consumer’s Affairs, Government of India. The data
for the period January 1,2007 to May 31, 2015 have been
used for model building and the remaining data have
been used for model validation. The summary statistics
for return and squared return series have been computed
and reported in table 1. A perusal of table 1 indicates
that both series are positively skewed and platy-kurtic.
The daily unconditional volatility of returns and the
squared return, as measured by standard deviations,
are 0.0127 and 0.0006 respectively.

The time series plot of spot price of lentil in Indore
market, log return series and squared log return series
have been exhibited in Fig. 1 to 3 respectively. A perusal
of the figure 1 indicates that the spot price data is
nonstationary; whereas the figure 2 and 3 depicts the
stationarity pattern of log return and squared log returns
series. In order to test for stationarity, two tests namely
Augmented Dickey-Fuller (ADF) unit root test (Dickey
and Fuller, 1979) and Philips-Peron (PP) unit root test
(Philips and Perron, 1988) are used. The advantage of
the PP tests over the ADF tests is that the PP tests are
robust to general forms of heteroscedasticity in the error
term and also the user does not have to specify a lag
length for the test regression. In both the tests, the null
hypothesis is “series is nonstationary” and alternative
hypothesis is “the series is stationary”.

The results of the tests are reported in Table 2. Table
2 indicates thatboth the returns as well as squared return
series data are stationary but the spot price is
nonstationary at level and stationary at first differenced
data.

Fig. 3: Squared Log returns series
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Presence of ARCH effect has been tested for both the
log returns as well as squared log returns series. It is
found that in squared returns series; there is significant
presence of ARCH effect; whereas in the return series,
there isno ARCH effect.

Table 1: Descriptive Statistics for spot price log Returns and squared log returns

Statistics Spot price Logreturn Squared log return
Mean 3848.7450 0.0006 0.0002
Median 3650.0000 0.0000 0.0000
Maximum 7025.0000 0.1069 0.0196
Minimum 1817.5000 -0.1399 0.0000
Std. Development 983.8358 0.0127 0.0006
Skewness 0.8127 -0.3578 18.2276
Kurtosis 3.5709 16.9068 458.4408
Table 2. Test for stationarity
. ADF Test PP Test
Spot price-level -0.685 -0.649
Spot price-Ist difference -20.681** -39.022**
Return series -20.515** -38.318**
Squared return series -17.026** -38.105**

**denotes significant at 1% level

EconomicAffairs2015: 60(3): 457-466
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Autocorrelation

The distributional characteristics of the return series
can be investigated further by analyzing the behavior of
their autocorrelation functions. The results, displayed
in Fig. 4 and 5, show that the autocorrelation functions
of the returns are small and have no particular form.
Most of them stay inside the 95% confidence intervals
(the horizontal dotted line parallel to x-axis). This is
suggestive of their short memory property. The
autocorrelation functions of the squared returns are
however larger, and they remain significant for many
lags. More importantly, they exhibit a slow decay,
indicating that the time series are strongly auto-correlated
up to a long lag.

0.15

ACF
0.05

1 T T 1
0 200 400 600D 800 1000
Lag

Fig. 4: Autocorrelation Function for log Returns

0.25
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0.15

0.05

0 200 400 500 800 1000
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-0.05

Fig. 5: Autocorrelation Function for squared log
Returns

Results of long memory tests

We apply the GPH tests for testing long memory to
the raw and squared returns of the spot prices of lentil.
The obtained results are reported in Table 3. For the (raw)
return series, the test shows no evidence of LM patterns;
as the null hypothesis of no persistence is not rejected.

462

Paul, et al.

Table 3: Results of LM Tests for Returns and
Squared Returns

Long memory parameter Return Squared return
d -0.074 0.3497
S 0.110 0.114
z 0.061 3.182
P-value 0.951 <0.01

The result for squared return is different from that of
the returns. Indeed, long memory property is found to be
highly significant for the squared returns. Since squared
returns are a good proxy for volatility, these findings
thus suggest that the conditional volatility of return
would tend to be range-dependent, persist and decay
slowly. Intuitively, this volatility persistence can be
appropriately modeled by a FIGARCH process because
it allows for long memory behavior and slow decay of
the impact of a volatility shock.

Itis, however, important to note that the estimate of
the LM parameter d'is less than 0.5 for squared return
indicating the stationarity of the process.

Fitting of FIGARCH Model

At first step, ARIMA model was fitted to the log
returns series of lentil in Indore market. On the basis of
autocorrelation function, partial autocorrelation
function and AIC and BIC criteria, AR(1) models was
found to be suitable for the data under consideration. In
the next step, the residuals were checked for presence of
ARCH effect. It is found that the autocorrelation
functions are significant for the squared residual of fitted
AR(1) model up to log lags and also ARCH — LM test is
significant. So there is a significant presence of ARCH
effect.

Table 4: Parameter estimate of AR(1)-
FIGARCH(1,d,1) Model

M ean equation
Constant 0.0002 | 0.0003 | 0.6391 0.5229
AR(1) 0.2464 | 0.0269 | 9.169 <0.001

Variance equation
Constant 0.1119 | 0.0476 | 2.351 0.0188

d-Figarch 0.3966 | 0.0866 | 4.579 <0.001

ARCH(Phi1) 0.4174 | 0.1220 | 3.420 <0.001

GARCH(Betal) | 0.6000 | 0.1322 | 4.538 <0.001
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On the basis of minimum AIC and BIC values, the
best model identified for the data under consideration is
AR(1)-FIGARCH (1,d,1) model. The parameters estimate
of AR(1)-FIGARCH (1,d,1) model is reported in table 4.
A perusal of table 4 indicates that, all the parameters are
statistically significant. The long memory parameter, d
is less than 0.5 ensures the stationarity of the model. The
conditional variance of fitted FIGARCH model is
reported in figure 6. It clearly indicates that conditional
variance is very much time dependent.

anee e : ; —
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Fig. 6: Conditional variance of fitted FIGARCH
model on the returns series

Diagnostic Checking

The model verification is concerned with checking
the residuals of the model to see if they contained any
systematic pattern which still could be removed to
improve the chosen FIGARCH Model. This has been
done through examining the autocorrelations and
partial autocorrelations of the residuals of various lags.
For this purpose, autocorrelations of the residuals were
computed and it was found that none of these
autocorrelations was significantly different from zero at
any reasonable level. This proved that the selected
FIGARCH model was an appropriate model for
capturing the volatility present in the data under study.

Validation

One-step ahead forecasts of volatility for the period
June 01, 2015 to July 31, 2015 (total 50 data points
excluding market holidays) in respect of above fitted
model are computed. The accuracy of model has been
checked based on 9 windows namely 5-step, 10 step, 15-
step, 20-step, 25-step, 30-step, 35-step, 40-step and 43-
step ahead forecast. For measuring the accuracy in fitted
time series model, Mean square prediction error (MSPE),
Root mean square prediction error (RMSPE), Mean

EconomicAffairs2015: 60(3): 457-466

absolute error (MAE) and Relative mean absolute
prediction error (RMAPE) are computed by using the
formulae given below and are reported in Table 5.

h
MAE = 1/ h2|yt+i - 9t+i ,

i=1

h
MSPE =1/ hZ{m Vesi) }

i=1

h 1/2
RMSPE = [1/ hY. {(ym ~ Vi ) }}
i=1

h
RMAPE = 1/hY " Vi = 9uui|/ Vi x1200
i=1

where, hdenotes the window length

A perusal of table 5 indicates that percentage error
for all the window length is less than 1% representing a
very good forecasting by the model. The actual and
forecast value along with the percentage deviation is
also reported in table 6 to verify the forecast individually.
Here maximum deviation has been found to be 2.553 %
on 17th July.

Table 5: Validation of Models

Window
length | RMAPE(%) | MAE MSPE | RMSPE
5 0.787 52.64 5762.56 75.91
10 0.600 40.02 3416.21 58.45
15 0.704 46.43 3669.81 60.58
20 0.616 40.58 305254 55.25
25 0.591 39.36 2978.07 54.57
30 0.677 37.12 2636.91 51.35
35 0.736 40.80 3310.87 57.54
40 0.729 39.00 3034.10 55.08
43 0.737 38.37 2899.63 53.85

The fitted model along with the actual data points
is also depicted in Fig. 7 to visualize the performance of
fitted models.

Conclusion

Several papers in the literature have addressed the
issue of volatility modeling for commodity prices, but
very few of them have actually investigated the nature
and causes of the observed volatility persistence. The
present investigation is aimed to fill this gap by testing
the relevance of long memory in modeling the return
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Table 6: Actual vs. predicted price (¥/Quintal)
Predicted Per cent Predicted Per cent
Date Actual Price Price Deviation Date Actual Price Price Deviation
01-Jun-15 6700 6544.940 2.314 01-Jul-15 6550 6558.008 0.122
02-Jun-15 6700 6744.203 0.660 02-Jul-15 6550 6552.080 0.032
03-Jun-15 6700 6702.128 0.032 03-Jul-15 6537.5 6552.080 0.223
04-Jun-15 6650 6702.128 0.784 06-Jul-15 6643.75 6536.623 1.612
05-Jun-15 6650 6640.340 0.145 07-Jul-15 6700 6671.243 0.429
08-Jun-15 6681.25 6652.112 0.436 08-Jul-15 6700 6715.503 0.231
09-Jun-15 6650 6690.785 0.613 09-Jul-15 6750 6702.128 0.709
10-Jun-15 6650 6644.742 0.079 10-Jul-15 6800 6764.025 0.529
11-Jun-15 6600 6652.112 0.790 13-Jul-15 6812.5 6814.041 0.023
12-Jun-15 6600 6590.325 0.147 14-Jul-15 6850 6817.624 0.473
15-Jun-15 6500 6602.096 1571 15-Jul-15 6825 6861.076 0.529
17-Jun-15 6500 6478.634 0.329 17-Jul-15 7000 6821.268 2.553
18-Jun-15 6450 6502.065 0.807 20-Jul-15 7000 7044.269 0.632
19-Jun-15 6500 6440.278 0.919 21-Jul-15 7025 7002.223 0.324
22-Jun-15 6575 6513.948 0.929 22-Jul-15 7000 7033.158 0.474
23-Jun-15 6600 6594.955 0.076 23-Jul-15 7000 6996.323 0.053
24-Jun-15 6600 6608.024 0.122 24-Jul-15 6950 7002.223 0.751
25-Jun-15 6612.5 6602.096 0.157 27-Jul-15 6900 6940.433 0.586
26-Jun-15 6600 6617.560 0.266 28-Jul-15 6887.5 6890.418 0.042
29-Jun-15 6525 6599.143 1.136 29-Jul-15 6850 6886.734 0.536
30-Jun-15 6550 6509.458 0.619 30-Jul-15 6800 6843.336 0.637
31-Jul-15 6800 6790.387 0.141
7500 -
= 6500
=
£ 5500
o
Sy
g 4500
=
w 3500 A
S
2 2500 A
1500
EEB5888233g&8 8o WgdogonagddIan
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Fig. 7: Observed vs. predicted spot price of Lentil

and volatility for the spot prices of lentil. Application of
GPH test indicated the existence of long memory in the
volatility processes. On the basis of minimum AIC and
BIC values, the AR(1)-FIGARCH(1, d, 1) model was found
to be the best model for describing long memory in
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volatility. The sample ACFs of the volatility processes
decay hyperbolically as the lag increases, indicating
long-term memory exists in the squared log return series.
In the context of the current financial situation, there is
an increasing interest by traders, investors, portfolio

EconomicAffairs2015: 60(3): 457-466



Modeling Long Memory in Volatility for Spot Price of Lentil with Multi-step Ahead Out-of-sample... 465

managers, physical users and producers, and policy
makers to understand better the performance and the
distributional characteristics of increasingly important
asset classes. Such enhanced understanding should
lead to better returns, greater benefits from portfolio
diversification, more adequate pricing of derivatives and
improvement in risk management strategies. We find that
long memory is particularly strong and plays a dominant
role in explaining the spot price return of lentil. Finally,
our out-of-sample analysis indicates that the FIGARCH-
based model performs satisfactorily in terms of MASPE,
MAPE and RMAPE.
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