
Abstract

During the last six decades, the information theory has attracted the researchers from worldwide and its literature is 
growing leaps and bounds. Some of its terminologies even have become part of our daily language. Every probability 
distribution has some uncertainty associated with it. The concept of ‘entropy’ is introduced here to provide a quantitative 
measure of this uncertainty. Different approaches for measure of entropy and its development has been made, viz: 1.An 
axiomatic approach, 2.Measure of entropy via measure of inaccuracy and directed divergence and 3.Information measures 
and coding theorem. A hypothetical data of agricultural, fisheries and forestry sectors, in each of nine years were framed. 
All inputs bought to fisheries and forestry sectors were supplied by other firms of the same sector. It was worked out that 
the smaller the distance of probability distribution P from Q, the greater will be the uncertainty and greater the entropy. 
This is always positive and vanishes if and only if P = Q. Now from the Shannon entropy
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The calculation of D.F. Kerridge inaccuracy same as we did for measures using the Kullback – Liebler measure of relative 
information. So that as probability becomes more and more probability equal as the probability distributions comes closer 
to the uniform distribution, D(P/Q) becomes smaller and smaller, H(P) decreases larger and larger till H(P) approaches 
log n as P approaches Q.
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Every probability distribution has some uncertainty 
associated with it. The concept of ‘entropy’ is 
introduced here to provide a quantitative measure 
of this uncertainty. Entropy is a measure of disorder 
or randomness of a system with a large number of 
constituents and assumes its maximal value when a 
system can be in a number of states randomly with 
equal probability and is minimally zero when the 
system is in a specific state, with no uncertainty in 
its description.

During the last six decades, the information theory 
has attracted the researchers from worldwide and 
its literature is growing leaps and bounds. Some of 
its terminologies even have become part of our daily 
language. The subject has now developed to such an 
extent that it is being applied in many quite different 
disciplines such as biology, chemistry, cybernetics, 
economics, linguistics, statistical inference and 
statistical ecology, computer sciences, pattern 
recognition, fuzzy sets etc. 
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 We restricted ourselves only to those aspects of 
information theory which are closely related to our 
work. Different approaches for measure of entropy 
and its development has been made, viz:

	 1.	 An axiomatic approach.

	 2.	 Measure of entropy via measure of 
inaccuracy and directed divergence.

	 3.	 Information measures and coding theorem.

Measure of entropy via measure of inaccuracy and 
directed divergence:

Suppose an experimenter asserts that the probabilities 
of the events E1, …, EK are Q = (q1, …, qK) ∈ δK while 
the true probabilities are P = (p1, …, pK) ∈ δK. The 
asserted probabilities may naturally be different 
from the true ones on the following two counts.

	 (i)	 The available information may not be 
enough and hence the statement may be 
vogue and 

	 (ii)	 Because of wrong information the statement 
may be incorrect.

Kerridge (1961) has given a concept of inaccuracy 
which takes into account both these aspects . For P, 
Q, ∈ δK the measure of this inaccuracy is formulated 
via 
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Here the assumptions that whenever any qi is zero, 
corresponding pi also is zero and the convention 0 
log 0 = 0 is adopted. The expression (1.2.1) can be 
written as 
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Kerridge called EK (P; Q) “inaccuracy of error”. 
Obviously when pi = qi for each i, EK (P; Q) = 0 
and then the Kerridge inaccuracy is nothing but 
the entropy due to Shannon. Thus the Kerridge 
inaccuracy is a generalization of Shannon’s entropy. 
Kerridge himself gave an axiomatic characterization 
of HK(P; Q).

By employing the idea of inaccuracy measures, the 
relation between noiseless coding and entropies have 

further been enhanced. Suppose that two persons A 
and B believe that probability of ith event is qi and 
that the code words with lengths n1, n2, …, nK has 
been constructed accordingly. But contrary to their 
belief the true probability is pi . Such a code is called 
‘personal probability code’ and a result is established 
as 

K

i D i
i 1

L  H(P, Q) - p log q
=

≥ ≥ ∑
	 (1.2.3)

This coding theory approach if ni to be an integer just 
greater than equal to -logD pi , we get the minimum 
codeword length which corresponds to a measure of 
entropy. However, we take another set of codeword 
lengths given by ni integer just greater than or equal 
to -logD qi, where q1, q2, …, qK is another probability 
distribution. We get a mean codeword length lying 

between ∑ ii q logp-  and 1q logp- ii +∑ . The 
measure of inaccuracy defined by eqn. (1.2.1) is 
expressed as the measure of inaccuracy is greater 
than equal to the measure of entropy and the two 
measures coincides only if we use the minimizing 
codeword lengths.

In this approach we obtain entropy of a probability 
distribution in terms of its ‘distance’ from the most 
uncertain distribution i.e. U. The smaller the distance 
of probability distribution P from U, the greater 
will be the uncertainty and the greater will be the 
entropy. The first measure of directed divergence 
of a probability distribution P from probability 
distribution Q was given by Kullback and Liebler 
(1951) defined as 
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This is always ≥ 0 and vanishes iff p = Q. Now from 
Shannon’s entropy 
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So that as the probabilities become more and more 
equal i.e. as the probability distribution comes closer 
to the uniform distribution, D(P,U) becomes smaller 
an smaller, H(P) becomes larger and larger till H(P) 
approaches log n as P approaches U.

The study was undertaken with the following 
objectives:

	 1.	 To propose the improved information 
measures on univariate and bivariate 
distributions and their relationships 
in coding with respect to conventional 
measures.

	 2.	 To examine the measures of information 
empirically.

Methodology

Suppose in the light of an experiment (we mean, 
after taking observations) the set of probabilities are 
revised from qi to pi (i.e. 1, …, k). Then, Kullback and 
Leibler (1951) relative information provided by an 
experiment is defined via 
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This measure has found applications in statistical 
inference and estimation. It is assumed that whenever 
any qi is zero, then corresponding pi is also zero 

and we take 
0
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. Kullback (1959) called 
it “divergence”, Kerridge “error” Renyi (1960) and 
Aczel (1968) “information gain”.

Detailed study of this measure, with its applications 
in statistics would be found in Kullback. Theil 
(1967) has given its several applications in economic 
analysis. In this context an important issue in input-
output analysis is to what extent the input structure 
of the various sectors is stable over time. The 
procedure is applicable for measuring the inaccuracy 
of various types. The inaccuracy of the forecast of the 
input structure of agriculture, forestry and fishery 
of second year (the 2nd column of the table 1 over 
the first year (the first column of the table 1) have 
been calculated by utilizing the equation (1). Next, 
third year is to be predicted on the basis of the Ist 
year data, and, so on, the information inaccuracy of 

the forecast is measured (which are not consecutive) 
which gives the complete information of all input 
structure forecasts for the agriculture, forestry and 
fisheries in the years 1st through year 9th. The first row 
contains the information inaccuracy values which 
are obtained when the first year input structure is 
used to forecast the structure of second year, third 
year, ….. up to ninth year. The second row uses the 
second year data, used to predict all later years, 
third, fourth, so on up to ninth and so on. The figures 
increase from left to right in each row.

In the same way, the forecast two years ahead, three 
years ahead and so on are calculated. The results 
are shown in Table 2 which contains the average 
information values of the agriculture, forestry and 
fisheries sectors. For large span of time value, the 
aggregation procedure is applied.

Averaging procedure is applicable to calculate the 
diagonal figures of the table 2 that are all inaccuracy 
values corresponding to forecasts one year ahead. In 
the same way forecasts two years ahead, three year 
ahead, and, so on, may be calculated. This, we call 
average inaccuracy. The results are shown in table 
3, which contains the average inaccuracy values of 
agriculture, forestry and fishery. This procedure 
is applicable for measuring the various types of 
inaccuracies of the forecast of the input structure of 
agriculture forestry and fishery.

Results and Discussion

A hypothetical data of agricultural, fisheries and 
forestry sectors, in each of nine years were framed. 
All inputs bought to fisheries and forestry sectors 
were supplied by other firms of the same sector. 
This includes the seed, feed plants by one from 
other. Furthermore, some percentage were supplied 
by food manufacturing sector, chemical sector, 
chemical and petroleum refineries, services rendered 
by wholesaler, some percentage is the share of all 
other sectors which are their supplier to agriculture, 
fisheries and forestry, goods and services supplied 
by economic agent outside the domestic enterprises 
system. Another is wage paid to hired labours. There 
is also depreciation on fixed assets such as loan 
interest, and net profit, etc.

This input – output system is such that total inputs 
equal to total output for each sector, necessity to be 
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exhaustive with respect to the various inputs and it 
included depreciation and net profit.

Table 1 shows the input structure of a country in nine 
years containing agriculture, forestry and fisheries, 
which has been supplied by various sectors of 
economy. The sectors are other firms of agriculture, 
fisheries and forestry, food manufacturing, chemical 
and petroleum refineries sector, wholesale trading 
sectors, all other sectors, import sectors, wages 
sectors and gross profit sectors. As per profitability 
norms these total supplied sectors are accounted 
as one. In the first year other firms of agriculture, 
fisheries and forestry supplied by 18.60%, food 
manufacturing sectors 8.00%, chemical and petro 
refineries 3.50%, wholesale traders 1.50%, all other 
sectors 9.10%, imports 4.70%, wages.

14.20% and gross profit 40.40% respectively supplied 
to the main sector. Similarly in the next years these 
sectors supplied to the main sector and so on. A close 
perusal of the table indicates the decreasing trend of 
input supply in years to year ahead. This shows the 
probability is in decreasing orders implies that the 
uncertainty increases and create information more. 
In this scenario it is important to mention that in case 
of reduction in probability entropy increases and 
getting more information to reduce the uncertainty.

	 (1)	 Information inaccuracy of the forecast of 
agriculture, forestry and fishery on the basis 
of second year over the first year
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	 (2)	 Suppose the 3rd year is to be predicted on 
the basis of first year data, the information 
inaccuracy is then 
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The second row uses the second year data, to predict 
all later years i.e. third year, fourth year, … , eighth 
year. We observe that figures of the Table 2 increases 
row wise systematically when we move from left to 
right in each row. 

The number of information inaccuracy values 
obtained is large and even larger when we carry 
out the same procedure for the input structure. The 
number of bits will very from year to year. Since the 
information concept is essentially additive. A natural 
measure for inaccuracy of a number decomposition 
forecasts is the average information inaccuracy 
given in Table 3. We notice that the diagonal figures 
of the Table 2 (365, 544, 129, … , 50 all in 10-5 bits) 
are inaccuracy values corresponding to forecasts one 
year ahead. In the same way, the forecasts two year 
ahead, with inaccuracy values (1519, 783, …., 32 in 
10-5 bits and so on).

Table 1. Structure of inputs supplied by different sectors of an economy towards Agriculture, Fisheries and Forestry sector 
over different years (Hypothetical)

S. 
No. Particulars 1st 

year
2nd 

year
3rd 

year 4th year 5th year 6th 
year 7th year 8th year 9th year

1 Other firms of Agri., Fisheries and Forestry 0.186 0.175 0.167 0.163 0.161 0.159 0.156 0.153 0.15
2 Food manufacturing sector 0.080 0.089 0.098 0.090 0.088 0.085 0.083 0.082 0.083
3 Chemical and Petroleum Refineries sector 0.035 0.037 0.033 0.035 0.033 0.031 0.030 0.030 0.032
4 Whole sale traders sector 0.015 0.015 0.015 0.017 0.015 0.016 0.017 0.015 0.017
5 All other sectors 0.091 0.094 0.083 0.081 0.079 0.077 0.075 0.073 0.073

6 Imports sector 0.047 0.042 0.041 0.04 0.038 0.035 0.033 0.035 0.032

7 Wages sector 0.142 0.126 0.111 0.107 0.105 0.103 0.101 0.102 0.103
8 Gross profit 0.404 0.422 0.453 0.467 0.481 0.494 0.505 0.510 0.501
9 Total Input 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2. Information of eight years of the input structure of Agriculture, Forestry and Fisheries

Base year (t) 01 02 03 04 05 06 07 08
00 365 1519 1836 2333 2970 3639 3779 3892
01 534 783 1164 1690 2245 2402 2439
02 129 261 563 915 1004 1067
03 74 249 485 569 582
04 71 231 260 310
05 46 84 106
06 39 32
07 50

Note: All information values expressed in 10-5 bits.

Table 3. Average Information Inaccuracy for different time spans of predication 

Time span (t) Agri., Fisheries and Forestry 
averaging procedure

Averaging improvement by taking the successive 
difference of the elements of column

(1) (2) (3)

I year 163
II year 450 450 – 163 = 287
III year 736 736 – 450 = 286
IV year 1163 1163 – 736 = 427
V year 1700 1700 – 1163 = 1584
VI year 2369 2369 – 1700 = 669
7th to 8th year 3370 3370 – 2369 = 1001

Note: All information value expressed in 10-5 bits.

The results are shown in table 3 which contains the 
average information values of the agriculture sector. 
This agrees as regards the increase with an increasing 
time span t. For large τ values some aggregation is 
applied. Since the number of observations would be 
rather small. The prediction year 7 to 8 implies that 
the average inaccuracy value is taken for all cases for 
which τ = 7, τ = 8 and similarly for 7 - 10.

The averaging procedure is applicable. The 
diagonal figures of the table are all inaccuracy value 
corresponding time t. Now we consider this result 
in the light of the prediction revisions. Our aim is 
to predict input structure of some sector in year 7. 
Suppose that first year is the most recent year for 
which input data are available, so that τ = 7 years. 
Suppose that one year later we have secondary data 
and that we are still interested in 7 yrs. Then we 
are in a position to make a prediction revision. The 
original information inaccuracy forecast is 

 ∑= iii /qp logpD(P/Q) 		  (4.4.1)

where q1, q2, …, qK represent the I yr input structure 
and p1, p2, …, pK that of 7 years (the year to be 
predicted). One year later, we have the 2nd year input 
structure at our disposal. This is the revised forecast 
of the Pi to be indicated by q1′, q2′, ….., qK′. Their 
information inaccuracy is 

∑=′ '/qp logp)QD(P/ iii 	 (4.4.2)
Our expectation that the new inaccuracy is less than 
its predecessor at least on average otherwise the 
revision makes matter worse rather than better. So 
we subtract the new value from the old one.
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This is the information improvement of the forecast 
revisions qi′. It is positive when there is indeed an 
improvement in the sense that the information 
inaccuracy is reduced, zero when the inaccuracy 
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remains unchanged and negative when the 
inaccuracy is larger than it was before the revision. 
One can get average improvement from table 3 by 
taking the successive difference of the element of 
each column.

Now we calculate the Shannon Entropy of table 1

I Entropy of the 1st column of the table 1 is
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We proceed as usual, we find the entropy of the 
different columns of years to years, given in table 4.

	 (iii)	 Entropy of the third column, fourth column, 
…., ninth column given as (Table 4):

We observe that the number of entropy values 
obtained in table 4 is considerably smaller as could 
be expected. It seems that entropy is small and it 
becomes even smaller year to ahead with span of 
time t. Since information is always a measure of 
decrease of entropy. This implies that the gaining 
of information by reducing our doubts or chaos. 
In this way we are in a sound position to get the 
information year wise about the input structure of 
agriculture, forestry and fisheries sectors. Therefore 
we concluded that the probability decreases, 
entropy (information) increase. Since information is 
proportional to entropy, so information is improved 
which satisfies the relation given in (4).

Table 4. Entropy for different span of time

Column Entropies 
I 2.449 bits
II 2.427 bits
III 2.363 bits
IV 2.342 bits
V 2.229 bits
VI 2.265 bits
VII 2.238 bits
VIII 2.225 bits
IX 2.232 bits

Table 5. D.F. Kerridge inaccuracy 

Base 
year 
(t)

D.F. Kerridge Inaccuracy

01 02 03 04 05 06 07 08

00 2.452 2.464 2.468 2.472 2.479 2.486 2.489 2.488
01 2.483 2.435 2.439 2.445 2.45 2.452 2.452
01 2.365 2.366 2.369 2.369 2.372 2.373
03 2.342 2.344 2.346 2.347 2.348
04 2.30 2.302 2.302 2.303
05 2.266 2.660 2.660
06 2.239 2.238
07 2.2385

The result of Kerridge inaccuracy given in table (5), 
minus the Shannon entropy of table (4) is the direct 
result of table (2), which satisfies the relation given 
in (2). This is the inaccuracy of errors or vice versa. 
Since the relative measure is a measure of distance 
(directed divergence) between two probability 
distributions in terms of its distance from the most 
uncertain distribution Q. 

The smaller the distance of probability distribution 
P from Q, the greater will be the uncertainty and 
greater the entropy. This is always positive and 
vanishes if and only if P = Q. Now from the Shannon 
entropy
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The calculation of D.F. Kerridge inaccuracy same 
as we did for measures using the Kullback – Liebler 
measure of relative information. So that as probability 
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becomes more and more probability equal as the 
probability distributions comes closer to the uniform 
distribution, D(P/Q) becomes smaller and smaller, 
H(P) decreases larger and larger till H(P) approaches 
log n as P approaches Q.

Summary 

The concept of Shannon entropy (1948) is the central 
role of information theory referred as measure of 
uncertainly. The entropy of a random variable is 
defined in terms of its probability distribution and 
can be shown to be a good measure of randomness 
of uncertainties. This chapter mainly deals with its 
different approaches for the measure of entropy, 
information content, requirements of measure of 
uncertainty of probability distribution and their 
axiomatic approach and properties for discrete finite 
random variable are studied. The study is extended 
to measure of entropy via inaccuracy and directed 
divergence for two probability distributions. The 
third approach was initiated by Shannon himself 
in which he introduced the concept of information-
theoretic entropy.

Comprehensive review of literature is the most 
important for any research work. The chapter second 
gave an explanatory and specific relevant literature 
to understand the objectives of the present study. It 
mainly contained two major sub-headings viz.

	 -	 Shannon additive entropy and its 
generalizations, and 

	 -	 Non-additive entropies.

The chapter third deals with an understanding the 
mathematical foundation and its applications to the 
chapter 4, for the development of the information 
measures and their relation to coding theory was 
developed. The following preliminary is given under 
the following sub-heads.

	 1.	 Necessity of generalization of measure of 
information and inaccuracy.

	 2.	 Hölder’s inequality

	 3.	 Useful directed divergence measure

	 4.	 Kullback – Leobler’s relative information 
measure and their procedure for 
calculations.

In presence of the objectives of the present study 
on “Some improved measures of information” 

were discussed in detailed study in various aspects 
have been examined. The results were obtained 
and proved the coding theorems for univariate and 
bivariate probability distributions. The chapter four 
is further divided into four sections of the following 
sub-headings viz.

	 1. 	 Noiseless coding theorems for univariate 
probability distributions

	 2.	 Noiseless coding theorems on personal 
probability codes for bivariate probability 
distribution.

	 3.	 Useful directed divergence and its 
applications.

	 4.	 The information inaccuracy of input 
structure prediction and its information 
improvement.

Noiseless coding theorems for univariate 
probability were tried to express for two parametric 
generalization of order α of the power distribution 
Pβ, and established the upper bounds and lower 
bounds in terms of average code length under the 
given conditions. It is mentioned to note that

	 (i)	 When all code word length are equal, each 
of these means reduces to size n.

	 (ii)	 Each mean lies between min (n1, n2, …, nk) 
and max (n1, n2, …, nk).

	 (iii)	 If code word lengths (n1, n2, …, nk) are 
increased by α, then each mean is increase 
by α.

Noiseless coding theorems on personal probability 
codes for two distributions have been discussed 
by employing the idea of inaccuracy. The relations 
between noiseless coding and entropies have 
been further strengthened. We have proved 
coding theorems for personal probability codes by 
considering generalized measure of inaccuracy for 
incomplete probability distributions associated with 
the generalized average code lengths under the given 
constraints have been established. Some properties 

of (P)LR
β  are also discussed.

Further, we have discussed the properties, utility 
information function and useful directed divergence 
for two parameters with its application. We 
introduced a function using utility information 
associated the average code length with utility 
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aspect and established a result that in a way, give the 
characterization of the utility information measure 
satisfying the condition. We also obtained the bounds 
for all integers D > 1 as 

U)/Q;(PHU)N;,(PL β
α

β
α > .

According as R  1.

In next section, from different tables, input – output 
structure in span of time were discussed. A close 
perusal of the tables indicated the trends of the 
data, which give a large of information to reduce the 
uncertainty.
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